

Solutions de test pour systèmes de protection et de contrôle commande

Catalogue de produits

Profil de l'entreprise

L'entreprise

OMICRON est une société internationale desservant le secteur de l'énergie électrique et à ce titre propose des solutions de test de premier plan. La mise en œuvre de produits OMICRON permet aux utilisateurs répartis dans plus de 170 pays de tester en toute confiance leurs systèmes matériel de protection et de mesure ainsi que leurs équipements primaires.

Une innovation permanente

Depuis plus de 40 ans, les solutions innovantes développées par OMICRON ont établi de nouvelles méthodes en matière de tests d'injection secondaires. L'équipement de test CMC a ouvert la voie avec de nombreux progrès technologiques tels que la première utilisation du diagramme des phases, la première mise en œuvre CEI 61850 et bien d'autres encore, tandis que RIO (Relay Interface of OMICRON), et son successeur, XRIO, ont jeté les bases d'une autre nouvelle référence industrielle. Grâce à la technologie brevetée OMICRON Control Center, les tests automatisés des relais de protection ont connu une véritable révolution. Grâce aux méthodes de test de protection novatrices basées sur les paramètres du réseau, les utilisateurs peuvent facilement réaliser des tests très approfondis.

Excellente base de connaissances

Les ingénieurs d'OMICRON maîtrisent bien les besoins de leurs clients et développent sans cesse des solutions destinées aux réseaux électriques du monde entier. La tenue régulière de réunions avec les utilisateurs est l'occasion d'échanger des informations et les expériences mutuelles. Membre de nombreux organismes de normalisation internationaux, OMICRON est en mesure de partager ces compétences. Le fait de transmettre des connaissances spécialisées approfondies et de dispenser, dans le monde entier, une formation ciblée sur les applications aide les clients à mieux maîtriser les coûts des tests et des mises en service.

Une qualité de tout premier ordre

Les clients comptent sur l'aptitude de l'entreprise à fournir des produits de la plus haute qualité qu'OMICRON s'efforce constamment d'atteindre. L'engagement et l'esprit exceptionnel dont fait preuve une équipe d'employés hautement compétents constituent l'atout majeur de l'entreprise. Le fait que la société se soit vu décerner la récompense « Great Place to Work » représente la reconnaissance internationale de la qualité atteinte dans l'environnement de travail.

Une assistance clientèle exceptionnelle

Grâce à son important réseau constitué d'agences locales de l'entreprise, de distributeurs et de représentants dans le monde entier, OMICRON est toujours proche de ses clients et reste attentive à leurs besoins. Une assistance clientèle exceptionnelle et des relations sur le long terme avec les clients instaurent confiance et collaboration réussie.

Table des matières

Présentation des équipements de test CMC	∠
Options de fonctionnement	
Test Universe	6
RelaySimTest	8
CMControl P	8
CMC Swift	8
Test Universe	
OMICRON Control Center	10
Module Pause, Text View, ExeCute	10
OCC Batch	11
Définition de l'équipement à tester avec XRIO	11
PTL – Protection Testing Library	11
QuickCMC	
State Sequencer	13
Harmoniques	14
CB Configuration	14
Ramping	14
TransPlay	15
Advanced TransPlay	15
Pulse Ramping	16
Overcurrent	17
Overcurrent Characteristics Grabber	17
Distance	18
Advanced Distance	18
VI Starting	20
Autoreclosure	20
Advanced Differential	21
Annunciation Checker	22
Power	
Advanced Power	23
Transient Ground Fault	24
Synchronizer	
Meter	25
Transducer	26
PQ Signal Generator	27
NetSim	28
CMControl P	20
RelaySimTest	30
EnerLyzer, TransView	32
CMEngine	34
_	
Tests CEI 61850 et cybersécurité	2.0
StationScout	
StationGuard	
MBX2	
RBX1	
GOOSE Configuration	
Sampled Values Configuration	
IEC 61850 Client/Server	
DANEO 400	
ISIO 200	36
ADMO	39

Accessoires

	Accessoires de l'équipement de test CMC standard	40
	Kit d'accessoires de câblage pour CMC	
	Câble de générateur triphasé	
	Câble combiné de générateur	4
	Cordons de test de sécurité avec fusible	
	Mallettes de transport	
	Sacoches souples et valise	
	Kit de montage pour rack 19 pouces	
	Mini adaptateur USB sans fil	
	CMGPS 588 – Unité de synchronisation horaire	
	pilotée par GPS	4
	CMIRIG-B – Interface IRIG-B	4
	OTMC 100p – Horloge Grandmaster PTP	4
	TICRO 100 – Convertisseur temporel PTP	
	EMCON 200 – Convertisseur de média Ethernet	
	TWX1 – Test des relais à onde de propagation	4
	CPOL3 – Contrôleur de polarité et de câblage	4
	LLX1 – Tests d'appareils avec entrées de capteurs	
	LLX2 – Interface bas niveau pour amplificateurs externes	
	LLX3 – Sorties bas niveau polyvalentes	
	CMLIB A – Connecteur de signal bas niveau	
	RIB1 – Boîtier d'isolation bas niveau	
	CMLIB 7Sx8 – Adaptateur d'interface	4
	CMLIB REF6xx – Adaptateur d'interface	4
	REF 54x – Câble d'interconnexion pour relais REF 54x	4
	ISIO 200 – Borne d'entrées/sorties binaires	4
	RXB1 – Extension de sorties binaires	4
	VBO3 – Transformateur de tension	4
	CMTAC 1 – Adaptateur CA/CC pour entrée binaire de CMC	4
	Pince de courant	48
	C-Shunt	48
	ARC 256x – Simulateur d'arc électrique	48
	Tête de lecture optique pour les tests de relais	
	Têtes de lecture optique pour les tests de compteur	
S	olutions de test supplémentaires	
	CMS 356	
	COMPANO 100	
	ARCO 400	5(

Présentation des équipements de test CMC

Faisant appel à des technologies de pointe à la fois en développement et en assurance qualité, OMICRON ouvre de nouveaux horizons pour les équipements de tests secondaires avancés que ce soit en termes de flexibilité d'utilisation, précision, facilité de transport et fiabilité. En fonction de leurs impératifs dans ce domaine d'application, les utilisateurs peuvent choisir l'équipement idéal dans la famille des équipements de test CMC¹.

Différentes options de fonctionnement sont disponibles pour les équipements CMC :

- > Avec ses nombreux modules de test optimisés pour les applications et sa Protection Testing Library (PTL, bibliothèque de tests de protection), le logiciel PC **Test Universe** offre un large éventail de fonctions. Les options de combinaison flexibles dans les plans de test permettent un degré élevé d'automatisation permettant de gagner du temps.
- > Avec **RelaySimTest**, les utilisateurs peuvent facilement réaliser des tests très approfondis grâce à son approche basée sur les paramètres du réseau avec simulation intégrée.
- > Avec CMControl P, vous disposez d'une option de test manuel qui est parfaitement adaptée aux tests simples et rapides.
- > CMC Swift est conçu pour le pilotage sans fil pratique d'un équipement de test CMC à l'aide d'un appareil mobile.
- > Pour des domaines d'application spéciaux, les utilisateurs peuvent développer leurs propres programmes d'exploitation pour les équipements de test CMC avec l'interface de programmation **CMEngine**.

L'exploitation du CMC s'effectue soit par liaison filaire, USB ou Ethernet, soit par liaison Wi Fi².

CMC 500 – Relais de protection multi-phase modulaire et équipement de test de mise en service

Le CMC 500 est le choix idéal pour relever efficacement les défis actuels dans le domaine de la technologie de protection, tels que le vieillissement des infrastructures, l'élargissement nécessaire des réseaux électriques et la pénurie croissante de main d'œuvre spécialisée. Cet équipement de test léger et robuste délivre une qualité de test toujours élevée et permet une validation complète du système de protection en un temps record. C'est une solution polyvalente unique en matière de sécurité, de cybersécurité et d'évolutivité. Le CMC 500 répond parfaitement aux besoins et applications individuels. L'équipement est disponible en cinq variantes différentes comprenant quatre modules de générateur puissants et précis. Jusqu'à dix courants et sept tensions, ainsi que dix entrées de mesure (binaires et analogiques) sont disponibles pour les tests. Chaque variante peut être configurée avec des entrées de mesure purement binaires (bientôt disponibles) et une entrée de mesure CC supplémentaire en option.

- > 6 x 60 A/450 W + 4 x 30 A/200 W
- > 1 x 450 A/3 195 W
- > 7 x 300 V/115 W

Les valeurs des spécifications varient selon la variante d'équipement

¹ Des informations détaillées pour passer commande et les descriptions des packs sont disponibles à l'adresse www.omicronenergy.com.

² Le Wi-Fi est soumis à des contraintes techniques et juridiques. Pour de plus amples informations, contacter votre agence locale OMICRON ou partenaire commercial.

CMC 430 – Équipement de test de protection ultra-portable et dispositif d'étalonnage

Le CMC 430 est le premier choix des ingénieurs d'essai lorsque la transportabilité est une priorité et que trois courants allant jusqu'à 12,5 A et six sorties de tension de 150 V sont suffisants. Avec son faible poids de seulement 8,7 kg (19,2 lb) et sa conception robuste avec des angles protégés, l'équipement est parfait pour une utilisation intérieure et extérieure. Avec une précision extraordinairement élevée, c'est également un dispositif d'étalonnage pour toutes sortes d'équipements de mesure tels que les compteurs d'énergie, les transducteurs, les qualimètres et les synchrophaseurs. Le CMC 430 allie des performances exceptionnelles en tant que testeur de relais et dispositif d'étalonnage, à des équipements de mesure et d'enregistrement hybrides (analogiques, binaires, messages GOOSE CEI 61850 et Sampled Values).

- > 3 x 12.5 A/96 VA
- > 1 x 37,5 A/150 VA
- > 6 x 150 V
- > Erreur type < 0,015 % (rel.) + 0,005 % (pl.)

CMC 310 – Équipement de test de protection compact pour des tests manuels simples

Le CMC 310 est spécialement conçu pour les tests manuels triphasés des équipements de protection et de mesure avec CMControl P. Compact et léger, le CMC 310 est particulièrement adapté aux tests des réseaux de distribution et industriels.

- > 3 x 32 A/430 VA
- > 1 x 64 A/860 VA
- > 3 x 300 V

CMC 850 – Équipement de test de protection dédié à la norme CEI 61850

Le CMC 850 est spécifiquement axé sur les réseaux CEI 61850. Il communique avec l'équipement à tester en utilisant les protocoles en temps réel GOOSE et Sampled Values. L'équipement de test peut être utilisé avec le logiciel Test Universe ou RelaySimTest.

En raison de son utilisation unique pour signaux numériques CEI 61850, l'équipement est particulièrement petit et léger.

Options de fonctionnement

Test Universe

Le puissant logiciel PC Test Universe libère tout le potentiel des équipements de test CMC¹. Il offre une large gamme de modules de test optimisés pour les applications, permettant à l'utilisateur d'atteindre un degré élevé d'automatisation et de normalisation. Les utilisateurs ont accès à la vaste bibliothèque de modèles de test d'OMICRON, ou ils peuvent créer eux-mêmes des plans de test complets ou commander des modèles personnalisés chez OMICRON.

Tests des fonctions spécifiques de protection et de mesure

Test Universe propose une large gamme de tests automatisés dans des modules dédiés, spécialement conçus pour les fonctions particulières des équipements à tester, comme par exemple les tests des relais de surintensité, des relais de distance ou des relais différentiels.

Dans ces modules, une représentation graphique de la caractéristique de l'équipement de protection (diagramme I/t, plan d'impédance, etc.) permet de définir graphiquement les tests à réaliser et de visualiser les résultats directement dans le diagramme de caractéristique du relais. Des modules de test sur mesure sont également disponibles pour les compteurs, les transducteurs et les compteurs/analyseurs de qualité d'énergie.

Fonctionnalités générales

Le logiciel Test Universe comporte aussi des modules de test génériques afin de créer et de réaliser des tests spéciaux non prévus par les modules dédiés à des fonctions de protection.

Par exemple, ces tests peuvent être :

- > des séquences d'états de sortie, pilotées par le temps ou la réaction du relais testé avec des évaluations basées sur des mesures de temps
- > une rampe linéaire ou d'impulsion de grandeurs électriques avec évaluation du seuil d'activation ou de retombée
- > des tests manuels par réglage direct et sortie des valeurs de tension et de courant, des déphasages, des fréquences, etc., soit numériquement soit dans le diagramme des phases.

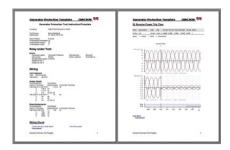
Outre les modules de test génériques, OMICRON propose une large gamme de logiciels supplémentaires fonctionnant avec les équipements de test CMC (par exemple des solutions de test CEI 61850).

Spécification de test

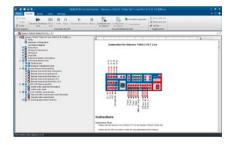
- comportement nominal
- tolérances
- points de test

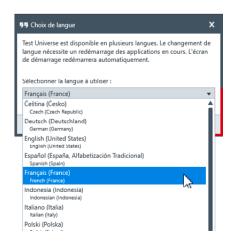
Rapport de test

- résultats
- tableaux
- schémas


OMICRON Control Center - Plans de test pour les équipements à tester multifonctions


Pour tester les nombreuses fonctions des relais numériques, la technologie OMICRON Control Center (OCC) permet de regrouper les modules de test individuels dans un plan de test global. Lorsqu'un test est effectué, les modules intégrés sont exécutés les uns après les autres et un rapport de test global incluant les résultats de toutes les fonctions testées est automatiquement créé.


Puisque le document de test contient la spécification de test complète (c'est-à-dire le comportement nominal (paramètres) de l'équipement à tester, les tolérances et les points de test, avec lesquels se fera la vérification), un tel document sert de base pour la répétition ultérieure du même test. Pour cela, le document est rechargé, les résultats sont effacés, le plan de test est relu et les nouveaux résultats sont enregistrés.


Ainsi, des tests créés une fois peuvent être renouvelés pour les tests de maintenance. Cela garantit une qualité de test constante, facilite la comparaison des résultats et fait gagner du temps lors de l'exécution des tests de routine. Les tests existants peuvent également être adaptés facilement pour tester des équipements similaires.

Création automatique de rapport

Tous les modules de test du logiciel Test Universe possèdent un élément commun: la création de rapport. Chaque module fournit un rapport de test entièrement formaté. Selon le module dont sont issus les résultats, les données sont présentées sous forme de tableau et/ou de graphique. Si plusieurs modules sont utilisés dans l'OCC pour constituer un test, chaque module ajoute ses propres résultats au rapport global. Lorsque les tests sont terminés, les résultats et les évaluations du test sont enregistrés automatiquement pour former le rapport complet. Les rapports peuvent être facilement imprimés, stockés ou exportés vers des applications bureautiques standard aux formats RTF (Rich Text Format) et TXT.

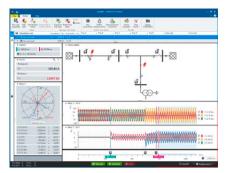
Les rapports de test peuvent aisément être personnalisés en fonction des besoins. Le contenu visible des rapports de test peut être défini indépendamment des données enregistrées: il suffit de sélectionner ou de désélectionner les éléments de la liste. Les données enregistrées restent disponibles dans le fichier de test, même si l'utilisateur a choisi de ne pas les inclure dans les rapports. Les paramètres de rapport définis sont générés rapidement et facilement, enregistrés et réutilisables ultérieurement; les éléments spécifiques à la société, tels que les logos, etc. peuvent être ajoutés très simplement.

Exportation des résultats de test: outre les formats d'exportation standard TXT et RTF pour une utilisation ultérieure des données, par exemple dans Microsoft Word, les documents OMICRON Control Center proposent les deux formats d'exportation suivants pour un post-traitement externe plus complet des données de test: le format CSV bien connu et XML (Extensible Markup Language). Les formats d'exportation de données CSV et XML sont également disponibles dans tous les modules de test en mode autonome. XML est un format de données basé sur le texte, qui fait appel à une méthode non propriétaire pour relier les données du test à n'importe quelle autre base de données (par exemple Microsoft Access, Microsoft SQL Server).

Protection Testing Library

Face au défi que constituent les tests des relais multifonctions modernes, OMICRON propose une bibliothèque de modèles de test de protection, la Protection Testing Library (PTL). Cette bibliothèque permet aux clients d'avoir accès à des plans de test préconfigurés pour les types de relais les plus courants des différents fabricants (ABB, Alstom, Areva, GE, Reyrolle, Schneider, SEL, Siemens, Toshiba, etc.), qui incluent:

- > une modélisation de relais, c'est-à-dire le calcul de caractéristiques (telles que les diagrammes de zone, ...) et de tolérances à partir des paramètres des relais, avec prise en compte des caractéristiques techniques indiquées dans le manuel de relais
- > un filtre pour importer les paramètres du relais extraits à partir du logiciel d'exploitation de ce relais, ou d'un outil de calcul de ces paramètres
- > une procédure de test pour les fonctions de relais courantes.


Non seulement les utilisateurs gagnent du temps en évitant de créer manuellement les caractéristiques de relais et les modèles de test, mais ils bénéficient également du savoir-faire d'OMICRON en matière de tests sur la façon de modéliser et de tester des relais spécifiques et leurs fonctions dans le logiciel Test Universe. De nouveaux modèles sont continuellement ajoutés à la PTL et peuvent être téléchargés par les clients sur le site Web d'OMICRON.

Langues

Test Universe est disponible en 16 langues standard. Vous pouvez à tout moment modifier la langue du système en sélectionnant la langue souhaitée dans la « sélection de la langue ». Toutes les langues sont automatiquement installées ; aucun composant logiciel supplémentaire n'est nécessaire.

En particulier pour les projets internationaux, les clients souhaitent souvent avoir un rapport dans une langue différente de la langue de travail du technicien de mise en service. Cela est tout à fait possible pour toutes les langues standard disponibles. En cas de modification de la langue du système, si un document de test est rouvert, le rapport de test est automatiquement présenté dans la nouvelle langue.

Options de fonctionnement

RelaySimTest

RelaySimTest est une solution logicielle de tests de protection basés sur le système avec des équipements de test OMICRON, qui adopte une approche novatrice et orientée vers l'avenir : le test est indépendant du type et du fabricant du relais et de ses paramètres. Au lieu de cela, RelaySimTest se concentre totalement sur le bon comportement du système de protection, grâce à la simulation réaliste de défauts sur le système électrique. Avec l'éditeur de réseau flexible de RelaySimTest, la simulation de réseaux électriques devient intuitive.

Comparé aux méthodes de test conventionnelles (comme les tests basés sur les paramètres avec Test Universe), RelaySimTest peut détecter nettement mieux les erreurs dans les paramètres, la logique et la conception du système de protection. Cela permet aux essayeurs de vérifier le bon comportement de leur système de protection plus rapidement et avec une qualité de test bien supérieure qu'auparavant. En complément des tests avec Test Universe, RelaySimTest contribue à la fiabilité du réseau électrique

CMControl P

CMControl P est un logiciel destiné à piloter des équipements de test CMC. Il est spécialement conçu pour effectuer des tests manuels simples des équipements de protection et de mesure. Il est disponible en tant qu'application pour PC ou tablette Windows et en tant qu'appareil de pilotage dédié sur le panneau avant. Les outils de test incorporés et les modèles de défaut intégrés garantissent des tests rapides et pratiques. Grâce à son interface utilisateur intuitive et son guidage innovant, il n'est pas nécessaire de suivre une formation spéciale.

CMControl P peut être commandé avec un équipement de test CMC autonome ou en combinaison avec un pack Test Universe (voir pages 9 et 29).

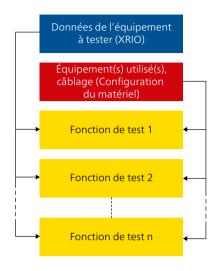
CMC Swift

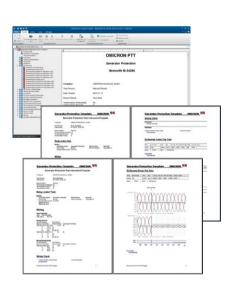
CMC Swift est une option de pilotage pour les équipements de test CMC, conçue pour un fonctionnement pratique et sans fil. CMC Swift permet de générer des courants et tensions analogiques via l'équipement CMC et d'appliquer ou de mesurer des signaux binaires. Il permet notamment de réaliser rapidement et simplement les contrôles de câblage et de système de contrôle, ainsi que les tests d'excitation et de déclenchement des fonctions de protection.

Grâce à son interface utilisateur intuitive, aucune formation spécifique n'est nécessaire. CMC Swift offre une liberté et un confort maximum, permettant de réaliser des vérifications simples sans ordinateur portable. Il est également parfaitement adapté aux contrôles de polarité et de câblage, notamment lorsqu'il est utilisé avec le CPOL3.

L'application CMC Swift peut être téléchargée depuis l'App Store (pour iOS) ou dans Google Play Store (pour Android).

Vue d'ensemble du pack Test Universe


Pour la combinaison équipements de test CMC (CMC 500, CMC 430) et logiciel Test Universe, quatre packs différents ainsi que des compléments optionnels sont proposés, adaptés aux différents types d'utilisation. Chaque pack contient une sélection de modules logiciels qui peuvent être utilisés de façon autonome ou être intégrés à des séquences de tests automatiques :


Esse	offre une bonne présentation des fonctions de base et modules ; peut servir de base pour des versions compilées individuellement		١	/ers	ions	;	
Sta	itandard contient tous les modules généralement utilisés pour les tests des équipements de protection basés sur les paramètres du relais						
Enh	anced		, spécifiquement étendu par des fonctions de tests basés sur les paramètres du réseau et de oire ainsi que de programmation libre.				
Con	nplete	couvre toutes les	fonctions et modules logiciels proposés pour le contrôle des équipements de test CMC	<u>.</u>	ard	ced	ete
Un Į	oack peut	être étendu en co	mmandant des modules logiciels supplémentaires ou des compléments optionnels.	Essential	Standard	Enhanced	Complete
	OMICRON	N Control Center ¹	Outil d'automatisation, plan de test, modèle et formulaire de rapport orientés documents				
	QuickCM	С	Tests manuels pratiques dans l'environnement Test Universe				
	State Seq	uencer	Test des temps de fonctionnement et de fonctionnement logique par séquences d'états				
	Harmonio	:S	Production de signaux avec harmoniques superposées				
	CB Config	juration	Module de configuration de la simulation de disjoncteur				
	Ramping		Production de rampes pour détermination des seuils d'amplitude, de phase et de fréquence				
	TransPlay		Lecture de fichiers COMTRADE, enregistrement d'état d'entrée binaire				
	Advanced	l TransPlay	Lecture de fichiers COMTRADE, enregistrement d'état d'entrée binaire, options de traitement et évaluation automatique				
Modules Test Universe	Pulse Ram	nping	Production de rampes pour détermination des seuils d'amplitude, de phase et de fréquence				
jve	Overcurre	ent ²	Test automatique des caractéristiques de surintensité directe/inverse/homopolaire				
ŗ	Distance		Évaluations d'élément d'impédance utilisant des définitions de tirs simples dans le plan Z				
Test	Advanced	Distance	Évaluations d'élément d'impédance utilisant des modes de tests automatiques				
es .	VI Starting	g	Tests de la fonction de démarrage de surintensité dépendant de la tension des relais de distance				
Inp	Autoreclo	sure	Tests de la fonction de réenclenchement avec modèle de défaut intégral				
ě	Advanced	l Differential ³	Tests complets des relais différentiels triphasés (quatre modules)				
	Annuncia	tion Checker	Vérification des remontées d'alarme et du câblage des équipements de protection				
	Power		Tests avec visualisation et évaluation dans le plan P-Q (basique)				
	Advanced	l Power	Test avec visualisation et évaluation dans le plan P-Q (amélioré)				
	Transient	Ground Fault ⁴	Simulation de défauts à la terre dans les réseaux isolés ou compensés				
	Synchron	izer	Tests automatiques des équipements de synchronisation et des relais synchro-check				
	Meter		Tests de compteurs d'énergie simples et multifonctionnels				
	Transduce	er	Tests des transducteurs de mesure				
	PQ Signal	Generator	Simulation de phénomènes de réseau pour tester les qualimètres selon les normes CEI 61000-4-30 et CEI 62586				
0	IEC 61850	Client/Server	Tests SCADA automatiques selon la norme CEI 61850				
185	GOOSE C	onfiguration	Tests avec GOOSE selon la norme CEI 61850				
CEI 61850	Sampled \	Values Configuration	Tests avec des Sampled Values conformes aux normes CEI 61850-9-2 (« 9-2 LE ») et CEI 61869-9				
B	IEDScout		Outil logiciel universel de travail avec les IED CEI 61850				
	CMContro	ol P App ⁵	Tests manuels rapides et simples des équipements de protection et de mesure			T	
es	CMC Swif	t ⁶	Outil simple et intuitif pour des contrôles simples de protection et de câblage				
tair	RelaySim ⁷	Γest⁴	Tests de protection basés sur les paramètres du réseau en simulant des phénomènes réalistes d'un réseau				
Outils supplémentaires		ns avancées du ormateur	Fonctions avancées du transformateur pour la protection différentielle				•
ppl	Fonction	ns du moteur	Fonctions du moteur pour une simulation de moteur asynchrone				
ns	CMEngine	e	Interface de programmation pour piloter des équipements de test CMC avec un logiciel spécifique à l'utilisateur				
ıtils	EnerLyzer		Mesures analogiques et enregistrement de transitoires avec les équipements de test CMC				
O	TransViev	V	Analyse de signaux transitoires de fichiers COMTRADE				
	ADMO lig	ht ⁷	Gestion des appareillages et de la maintenance pour les systèmes de protection				

Dans toutes les versions: OCC Batch, AuxDC Configuration, ISIO Connect (pour ISIO 200), Polarity Checker (pour CPOL3).

- ¹ Comprend les licences pour le module Pause, ExeCute, TextView
- ² Comprend la licence pour Overcurrent Characteristics Grabber
- ³ Comprend Single-Phase Differential
- ⁴ La licence RelaySimTest contient également les licences pour Transient Ground Fault et NetSim
- ⁵ Valide pour le CMC 430
- ⁶ Valide pour le CMC 500
- ⁷ ADMO light est limité à 50 éléments mais peut être mis à niveau à la version ADMO complète à tout moment

- Inclus
- □ Disponible en option

OMICRON Control Center

Les modules logiciels Test Universe d'OMICRON sont dotés de toutes les fonctionnalités nécessaires aux tests conventionnels. Grâce à la technologie brevetée OMICRON Control Center (OCC) (brevets n° EP 0904548 B1 et US 6418389 B2), ils peuvent être combinés de manière unique aux plans de test en un seul document. Il est facile de construire, entretenir et distribuer de tels plans de test.

Un document OCC contient au minimum les éléments suivants :

Données de l'équipement à tester

Définies au format XRIO, un environnement puissant pour décrire/modéliser tous les paramètres de l'équipement à tester. Les données de l'équipement à tester peuvent être saisies manuellement ou importées. Grâce aux convertisseurs XRIO, le transfert de paramètres du relais au logiciel de test est rapide et facile.

Essential

Standard Enhanced Complet

Information sur l'équipement de test, entrées/sorties et câblage Définies dans la configuration matérielle. Présentes tout au long d'un plan de test pour toutes les fonctions/tous les modules de test incorporé(e)s.

Modules de test avec configuration de test (points de test, etc.) Nombre et type de modules de test incorporés dépendant du type de tests à exécuter. Les tests s'adaptent automatiquement aux paramètres modifiés de l'équipement à tester, car ceux-ci sont transférés depuis la définition générale de l'équipement à tester. Avec la fonctionnalité LinkToXRIO (Lier à XRIO), l'utilisateur a accès à tous les paramètres de relais – y compris les paramètres supplémentaires définis par l'utilisateur – et peut les utiliser pour définir les points de test et les conditions d'évaluation.

En option: graphiques, textes d'instructions, etc.

Guide l'utilisateur au cours de la procédure de test en fonction des spécifications de test (schémas de raccordement, instructions de contrôle, etc.). Compatible avec Module Pause, Text View, ExeCute.

Rapport (après les tests)

Rapport de test créé automatiquement, contenant tous les résultats de test dans un format sécurisé avec des données exactes. Évaluation automatique des points de test en fonction des tolérances. Personnalisable pour répondre aux besoins de l'entreprise. Les résultats de test peuvent être exportés aux formats RTF, TXT, CSV et XML.

Réutilisabilité

Les documents OMICRON Control Center peuvent facilement servir de modèles pour les équipements à tester identiques ou similaires : copier simplement le fichier OCC, supprimer les résultats du test précédent et redémarrer pour réaliser à nouveau le test avec les mêmes paramètres, la même configuration et les mêmes spécifications de test. Pour des tests similaires, dont seuls les paramètres diffèrent (par exemple dans des postes avec plusieurs départs), il suffit de copier le fichier OCC et de modifier les paramètres. Ainsi, les durées des tests peuvent être réduites de façon significative.

Module Pause, Text View, ExeCute

. . . .

Essential

Standard Enhanced Complet

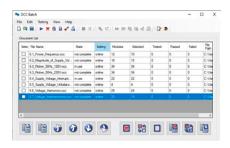
Les outils utiles suivants sont intégrés à OCC et permettent d'automatiser les plans de test :

Module Pause

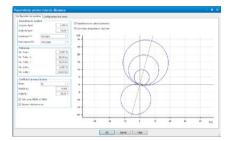
Permet de définir les paramètres des points d'arrêt dans les tests automatiques. Les concepteurs de test peuvent indiquer les instructions à afficher sous forme de messages (par exemple insertion d'un schéma de câblage).

TextView

Permet d'intégrer et d'afficher un fichier texte ou un fichier journal au cours d'une exécution de texte automatique.


ExeCute

Permet d'exécuter des applications externes (programmes) avec des paramètres de fichier ou de données au cours de l'exécution du Control Center pour un test automatique utilisant un document OCC (par exemple la modification automatique des paramètres de relais lors des essais de type).

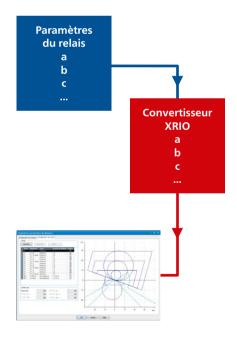

Standard Enhanced Complet

Essential

OCC Batch

Cet outil permet d'exécuter plusieurs documents Control Center (OCC) les uns après les autres. Il est particulièrement utile pour effectuer des tests de réception avec un nombre élevé de plans de test.

Définition de l'équipement à tester avec XRIO


Tous les paramètres nécessaires au test d'un équipement sont conservées au format XRIO (eXtended Relay Interface by OMICRON). Ces valeurs de réglage peuvent être soit rentrées manuellement soit importées à partir des fichiers de paramètres du relais. Les paramètres de l'équipement à tester peuvent également être exportés afin de les rendre accessibles aux autres plans de test.

LinkToXRIO (Lier à XRIO)

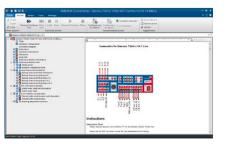
LinkToXRIO permet aux modules de test d'utiliser directement un paramètre de l'équipement à tester défini pour les tests. Si un paramètre est changé, les plans de test utilisant ce paramètre n'ont pas besoin d'être modifiés individuellement. Les plans de test effectueront leur test avec le paramètre modifié.

Convertisseurs XRIO

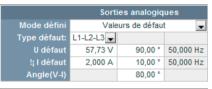
Les convertisseurs XRIO permettent de convertir efficacement les données disponibles dans la structure des paramètres du relais. C'est sur la base des paramètres de protection et des détails techniques décrits dans le manuel de l'équipement de protection concerné que la bibliothèque grandissante de convertisseurs XRIO spécifiques aux relais fournit des data models des caractéristiques et des tolérances de protection (p. ex. zones d'impédance, forme de diagramme l/t, etc.).

PTL - Protection Testing Library

La technologie logicielle de test innovante d'OMICRON, avec l'OMICRON Control Center, XRIO et LinkToXRIO, permet à tous les utilisateurs de créer des modèles de test adaptés aux réglages des relais. Il s'agit de notre bibliothèque de plans de test appelée PTL (Protection Testing Library). La bibliothèque permet aux techniciens de protection de bénéficier du travail d'OMICRON sur la modélisation des équipements de protection multifonctions, sur l'élaboration de plans de test et donc du savoir-faire en matière de tests.

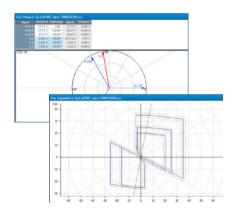

Cette bibliothèque permet aux clients d'OMICRON d'accéder gratuitement à des plans de test préparés et des modèles de relais (convertisseurs XRIO), ainsi qu'à des filtres d'importation de paramètres correspondant à des équipements de protection spécifiques. Tout utilisateur peut élargir ou personnaliser sans difficulté les plans de test ou les convertisseurs XRIO pour les adapter à ses besoins.

La PTL est régulièrement complétée et entretenue. Par exemple, la bibliothèque permet d'accéder à des modèles et des convertisseurs XRIO de relais de protection de ligne, de transformateur de puissance et de générateur. Différents types de relais d'ABB, Alstom, GE, Mitsubishi, Reyrolle, Schneider, SEL, Siemens, Toshiba et d'autres constructeurs sont pris en charge.


Avantages:

- > Gain de temps et de travail : gagnez du temps en évitant de créer manuellement les caractéristiques des relais et les modèles de test. Les paramètres de relais applicables peuvent aisément être saisis dans le convertisseur XRIO afin de visualiser et de tester les caractéristiques particulières de ce relais.
- > Importation des paramètres : les paramètres des relais peuvent être transférés manuellement ou automatiquement (par exemple à l'aide des filtres d'importation de paramètres correspondant à différents types de relais).
- > Source de connaissances : bien souvent, les relais ont un comportement spécial qui rend les tests difficiles et longs. Grâce aux fichiers PTL, les utilisateurs bénéficient du savoir-faire technique d'OMICRON.
- > Aucune programmation : les modèles de test PTL ne nécessitent aucune programmation ni aucun script.
- > Système ouvert : les modèles PTL et les convertisseurs XRIO sont totalement ouverts. Les utilisateurs peuvent ainsi adapter un modèle afin de répondre à leurs besoins.

La PTL fait partie intégrante du logiciel Test Universe standard et peut être téléchargée gratuitement depuis le portail du site Web OMICRON.



	Sort	ies analogiques	
Mode défini	Z%-I const.		
Type défaut:	L1-E ₩		
Z%	10 %	Long. ligne	
Phi Z	4,00°	Lier à l'angle de ligne	
ITest	2,000 A		
	,		

Sorties analogiques					
Mode défini		Puissance	-		
S1 (P1,Q1)	50,00 W	-16,67 var	50,000 Hz		
S2 (P2,Q2)	50,00 W	-16,67 var	50,000 Hz		
S3 (P3,Q3)	50,00 W	-16,67 var	50,000 Hz		
Sv (P, Q)	150,0 W	-50,00 var	50,000 Hz		
V L1-E	57,73 V	0,00°	50,000 Hz		
V L2-E	57,73 V	-120,00°	50,000 Hz		
V L3-E	57,73 V	120,00°	50,000 Hz		

QuickCMC

Essential Standard Enhanced Complet

Tests manuels rapides et faciles pilotés par PC

- > Contrôle simultané de tous les signaux de test disponibles (sorties de tension et de courant) de l'équipement de test CMC en termes de magnitude, de phase et de fréquence
- > Fonction d'état stable, incrémentation par rampe ou rampe d'impulsion de toutes les grandeurs
- > Application des défauts offrant différents modes de fonctionnement
- > Mesures des temporisations
- > Vue vectorielle et plan d'impédance

QuickCMC fournit une interface utilisateur simple et intuitive, ainsi que des fonctions puissantes permettant de réaliser des tests manuels pilotés par PC sur tous les types de relais de protection, de transducteurs de mesure et d'autres équipements.

Fonctions de sortie

Les grandeurs de sortie peuvent être saisies de manière classique sous forme de tensions et de courants ou en fonction du mode défini, par application directe de point d'impédance, de valeur de puissance ou encore en prenant en compte les composantes symétriques. Elles peuvent être définies numériquement ou par positionnement dynamique des éléments dans le diagramme des phases ou dans le plan d'impédance interactif à l'aide de la souris.

Génération des défauts

QuickCMC inclut la calculatrice des défauts qui convertit automatiquement les valeurs saisies pour déterminer les grandeurs de sortie correctes (tension, courant et déphasage) pour les défauts monophasés, biphasés et triphasés, les flux de puissance ou les composants symétriques. La tension et le courant résiduels sont également calculés et générés automatiquement. Selon le mode sélectionné, les valeurs sont affichées graphiquement dans la vue vectorielle ou dans la vue d'impédance, ainsi que numériquement dans un tableau.

Les canaux sans modèle de défaut affecté peuvent être définis sans aucune limitation (génération de signaux déséguilibrés, fréguence variable pour chaque canal, etc.). La fonction Gestionnaire d'unités permet d'alterner facilement entre la gestion de valeurs primaires/secondaires, de valeurs absolues/ relatives ou de secondes/cycles.

Mode Incrément ou Rampe

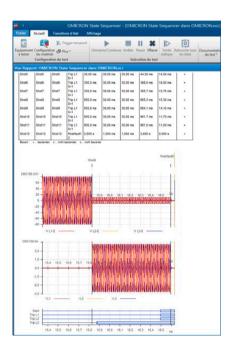
Le fonctionnement par incrément ou rampe permet de mesurer les seuils de montée et retombée des différentes fonction de protection. En mode Incrément, les grandeurs sélectionnées (courants, tensions, impédances, puissance, etc.) sont augmentées ou réduites d'une certaine valeur par un clic de souris. En mode Rampe, l'incrément défini est répété jusqu'à ce qu'une entrée binaire soit activée par le relais. La fonction rampe d'impulsion permet de tester facilement le seuil haut d'une protection sans avoir à désactiver le seuil bas.

Fonctions d'entrée/mesure

Les entrées binaires de l'équipement de test peuvent être utilisées pour surveiller les contacts secs ou polarisés et réaliser les mesures de temps correspondantes. De plus, les signaux des entrées binaires virtuelles de type GOOSE sont aussi pris en charge. La mesure de temps d'ouverture d'un disjoncteur peut être réalisée en injectant par l'intermédiaire du contact de ce disjoncteur et en prenant en compte l'ouverture du circuit courant. Les valeurs de sortie d'un transducteur connecté aux entrées CC analogiques peuvent également être affichées.

Rapports

Les résultats de tests de QuickCMC peuvent être mémorisés en vue d'une utilisation ultérieure. Comme pour tous les autres modules de test du logiciel Test Universe, le style et le contenu du rapport peuvent être personnalisés. En outre, la fonctionnalité de création de rapports de QuickCMC offre une fonction « bloc-notes » permettant d'ajouter des commentaires personnels au rapport.


¹ Le module GOOSE Configuration est nécessaire

Standard Enhanced Complet

Essential

State Sequencer

State Sequencer est un module de test très flexible permettant de mesurer des temporisations lors d'une succession d'états logiques/analogiques. Un état est défini par l'état des sorties (tensions et courants, sorties binaires) et par une condition définissant le passage à l'état suivant. On peut appliquer consécutivement plusieurs états de façon à définir une séquence de test complète. Le passage d'un état au suivant peut se faire : à l'issue d'une temporisation fixe, par une activation manuelle, après le déclenchement d'une entrée binaire du CMC ou après un déclenchement PTP, GPS ou IRIG-B (par exemple, pour des tests complets synchronisés avec plusieurs CMC). Il est également possible de mettre en boucle la séquence ou la sortie statique d'états individuels.

Définition des états individuels

Au sein d'un même état, tous les signaux de test configurés (sorties tension et courant) peuvent être définis indépendamment en amplitude, phase et fréquence. Outre l'entrée directe des tensions et des courants individuels, la Calculatrice des défauts intégrée permet de calculer automatiquement les grandeurs de test. Celles-ci peuvent être saisies comme valeurs de défaut, valeurs de puissance, composants symétriques ou impédances (avec modèle de courant de test constant, de tension de test constante ou d'impédance de source constante). Pour les relais de distance, des points de test peuvent être définis directement dans le plan d'impédance interactif montrant la caractéristique nominale de l'équipement à tester.

Mesures

Des conditions de mesure de temps peuvent être définies pour vérifier le bon fonctionnement du relais. Les temps et les tolérances de réponse individuelle peuvent être spécifiés pour chaque condition de mesure, permettant une évaluation entièrement automatique des résultats. Si le temps mesuré est dans la plage de tolérance, le test est « réussi »; sinon, il est « échoué ».

Outre les mesures de temps (toujours provoquées par un événement, par ex. un déclenchement), il est possible d'évaluer les états. L'évaluation d'un état est positive si les états définis aux sorties du relais raccordées aux entrées binaires sont dans l'état logique « vrai » pendant toute la durée d'un certain état.

Évaluation et création de rapports

Les conditions de mesure sont affichées dans un tableau. Après l'exécution d'un test, ce tableau contient également les temps et les écarts réellement mesurés, ainsi que l'évaluation automatique des résultats. La dernière colonne contient les informations « réussi » ou « échoué ». Tous les signaux temporels (tensions, courants et entrées binaires) peuvent être affichés graphiquement pour faciliter l'étude de la réaction du relais. Les signaux peuvent être activés individuellement, et il est possible de faire un zoom sur certains points dans le temps. Des curseurs de données facilitent le défilement suivant le temps pour la recherche de valeurs à des instants donnés.

Harmoniques

Le module Harmonics génère des signaux de test composés d'un signal fondamental de tension ou de courant et d'harmoniques superposées. Des signaux avec une fréquence jusqu'à 3 kHz (soit 60° harmonique à 50 Hz ou 50° harmonique à 60 Hz) peuvent être générés.

Essential

Essential

Standard Enhanced Complet

Standard Enhanced Complet

Essential Standard Enhanced Complet

Le module Harmonics permet de définir la fondamentale de trois signaux de tension et de trois signaux de courant et, superposés à ceux-ci, toute combinaison d'harmoniques de rangs pairs et impairs. Les harmoniques peuvent être saisies en pourcentage ou en valeur absolue. Les signaux harmoniques peuvent être exploités directement ou exportés sous forme de fichiers COMTRADE.

Le module Harmonics est doté d'un mode de sortie statique et d'un mode séquentiel. En mode séquentiel, une séquence composée de trois états peut être injectée :

- 1. Pré-signal: onde fondamentale
- 2. Signal: onde fondamentale et harmoniques
- 3. Post-signal: onde fondamentale

Une temporisation démarre au moment de l'injection de l'harmonique et s'arrête lorsqu'un événement de déclenchement survient. Le temps de réponse est indiqué.

CB Configuration

Le module Configuration DJ simule les contacts auxiliaires d'un disjoncteur ou d'un réenclencheur au cours d'un test (pour les relais exigeant la connexion et le fonctionnement de tels contacts pour fonctionner correctement). Selon les entrées et les sorties binaires disponibles, il est possible de simuler un fonctionnement unipolaire ou tripolaire du disjoncteur. Le temps de réponse défini du disjoncteur est visualisé dans la vue de test du module. La simulation est contrôlée par le firmware CMC, permettant aux contacts auxiliaires simulés du disjoncteur (52a, 52b) de répondre en temps réel aux commandes de déclenchement et de fermeture.

Ramping

Le module Ramping permet de tester les seuils de montée et retombée de fonctions de protection. Il génère des rampes d'amplitude, de phase ou de fréquence pour les sorties de courant et de tension. On peut effectuer des tests automatiques avec des rampes permettant le test de fonctions simples ou complexes. La flexibilité de ce module permet de définir deux rampes synchrones simultanées de variables différentes (deux composantes du même signal de sortie, par exemple l'amplitude de la fondamentale et de l'harmonique) avec n'importe quel nombre de segments de rampe.

Caractéristiques :

- > Tests automatisés avec séquences de rampes
- > Rampes simultanées pour deux variables et fonctions indépendantes (par exemple V/Hz)
- > Définition d'un nombre arbitraire de segments de rampe consécutifs
- > Contrôle visuel des valeurs de sortie (vue Signal temporel)
- > Fonction de répétition de test avec calculs statistiques
- > Calculs de rapport des deux valeurs de rampe, par exemple rapport montée/retombée
- > Fonction unique de retour en arrière pour des tests rapides et précis
- > Affichage des résultats de test avec évaluation automatique

Standard Enhanced Complet

Standard Enhanced Complet

Essential

Essential

TransPlay

Le module TransPlay¹ permet au CMC d'effectuer des tests avec des signaux transitoires. Les données de signaux transitoires, fournies par des enregistreurs de défauts, des équipements de test CMC avec EnerLyzer ou des programmes de simulation de réseaux, peuvent être chargées, affichées et relues avec TransPlay. La réaction de l'équipement de protection testé avec de tels signaux est enregistrée et peut être évaluée; un rapport de test est généré.

Il s'agit d'un outil idéal pour :

- > la recherche de problèmes en utilisant les enregistrements de défaut
- > l'évaluation des relais avec des fichiers transitoires (par exemple calculs EMTP)
- > les tests synchronisés de part et d'autre d'une ligne HT

Le module TransPlay est compatible avec les formats de fichiers suivants : IEEE COMTRADE (IEEE C37.111-1991/1999 et 2013) respectivement CEI 60255-24, PL4 et CSV.

Advanced TransPlay

Le module Advanced TransPlay ² propose les fonctions supplémentaires suivantes, entre autres :

> Marquage d'événements

Des marqueurs peuvent être définis afin d'indiquer des événements importants de l'enregistrement, par exemple l'apparition du défaut, le démarrage, le déclenchement, etc. Les mesures de temps sont effectuées à partir de ces marqueurs.

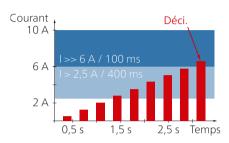
> Évaluation automatique

L'évaluation automatique du comportement des relais repose sur les mesures de temps des déclenchements des entrées binaires. Les mesures de temps peuvent être exprimées en valeurs relatives ou absolues :

Les mesures de temps absolues déterminent par exemple les instants de démarrage ou de déclenchement du relais au cours de la lecture du signal.

Les mesures relatives comparent la réaction du relais pendant la lecture à une référence définie.

- > Traitement des signaux transitoires à relire Il est possible de modifier, par exemple, les amplitudes du signal ou de répéter des parties du signal, par exemple, pour allonger une durée pré-défaut.
- > Signaux de sorties binaires


Advanced TransPlay peut relire les signaux binaires d'un enregistrement de défaut par l'intermédiaire des sorties binaires du CMC. On peut ajouter des signaux binaires supplémentaires (par ex., les signaux d'émission/réception de schémas basés sur des communications).

- > Synchronisation horaire
 - La lecture peut être synchronisée par PTP, GPS, un protocole IRIG-B ou une impulsion appliquée à une entrée binaire.
- > Mode de répétition
 - Les résultats individuels de chaque répétition, ainsi que les valeurs de moyennes et d'écarts types (fonctions statistiques), sont affichés.

¹ Les fonctions de TransPlay sont disponibles dans le module de test (Advanced) TransPlay en sélectionnant le mode Standard

² Les fonctions d'Advanced TransPlay sont disponibles dans le module de test (Advanced) TransPlay en sélectionnant le mode Advanced. La licence correspondante est nécessaire dans ce mode.

Pulse Ramping

Le module Pulse Ramping permet de déterminer facilement et de façon rapide, précise et complète

Essential Standard Enhanced Complet

les valeurs d'activation des relais multifonctions. Il permet de tester le seuil haut d'une fonction sans avoir à désactiver le seuil bas. Cela élimine une source potentielle d'erreur. L'utilisation d'une rampe d'impulsion permet aussi d'éviter l'application continue de courant élevé lors du test de protection électromécanique à seuil élevé.

Applications typiques : test de montée

- > des relais multifonctions avec deux seuils de fonctionnement
- > des relais de surintensité avec plusieurs seuils
- > des protections de générateurs et de moteurs
- > de la vitesse de variation de la fréquence (avec df/dt)

Exemple d'application de surintensité:

Souvent, la protection à maximum d'intensité est réalisée en deux étapes : une étape standard avec un temps de déclenchement plus long et une étape élevée avec un temps de déclenchement très court. Avec le module Pulse Ramping, il est facile de tester la valeur d'excitation de l'étape élevée : la durée de l'impulsion est plus courte que le temps de déclenchement de l'étape standard et les rampes d'impulsions ne forcent donc pas un déclenchement de cette étape.

Standard Enhanced Complet

Essential

П

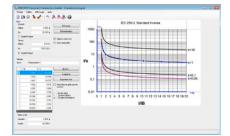
Overcurrent

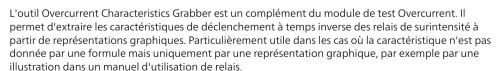
Le module Overcurrent est utilisé pour tester automatiquement les relais de surintensité directionnels et non directionnels avec auto-évaluation de la caractéristique du temps de déclenchement, des limites directionnelles des seuils de courant et du coefficient de dégagement. Grâce à la souplesse de la définition des limites directionnelles, il convient aussi parfaitement aux tests de la caractéristique des relais de défaut à la terre en régime permanent.

Le module de test prend en charge la définition de secteur directionnel et plusieurs seuils de phase ou terre, prenant en compte les composantes directes, inverses et homopolaires. Pour chaque élément, la caractéristique de déclenchement peut être sélectionnée individuellement et affichée dans le diagramme I/t et le diagramme directionnel.

Dans Overcurrent, l'ensemble des tirs de test peut être défini simultanément pour toutes les boucles de défaut souhaitées. C'est possible pour les types de défaut suivants :

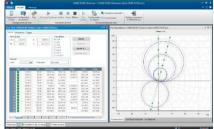
- > Défaut entre phases
- > Défaut phase-terre
- > Défaut de phase sans courant résiduel (pour tester les phases individuelles sans démarrage à la terre)
- > Système inverse
- > Système homopolaire


Le logiciel superpose les caractéristiques de tous les éléments dans le diagramme I/t ainsi que dans le diagramme directionnel. Tous les éléments qui correspondent au type de défaut appliqué sont inclus. Pour chaque point testé le résultat est évalué en prenant en compte les tolérances, pour les seuils courant et le temporisations


Caractéristiques essentielles

- > Définition sans restriction des éléments caractéristiques (type de caractéristique, secteur directionnel)
- > Pour chaque tir de test, prise en compte de tous les éléments actifs dans l'évaluation
- > Disponibilité simultanée de tous les types d'éléments et de toutes les caractéristiques
- > Tests de tous les types de défaut et de toutes les boucles de défaut dans un seul module de test
- > Définition des séquences des points de test (en termes de type de défaut, de variation d'amplitude du courant, et de variation d'angle du courant)
- > Tests de la caractéristique de montée/retombée avec évaluation automatique
- > Test avec ou sans courant de charge
- > Création automatique de rapport

Les caractéristiques temporelles peuvent être saisies directement dans des tableaux courant/temps ou s'appuyer sur des caractéristiques de relais et de réenclencheur prédéfinies très diverses. Des modèles structurés hiérarchiquement pour les caractéristiques de relais suivantes sont inclus : caractéristiques à temps inverse telles que les définit la norme CEI 60255-4 (BS 142), caractéristiques de type IAC et courbes spécifiques de relais dérivées de l'équation IEEE (PC37.112). Les variantes de ces caractéristiques prennent en charge les types de relais couramment employés. D'autres variantes peuvent être ajoutées au fichier des modèles, y compris des courbes numérisées avec Overcurrent Characteristics Grabber (voir ci-dessous). La prise en charge propre aux relais est renforcée par les modèles de test PTL qui associent les paramètres du relais à ceux du module Overcurrent et fournissent des exemples de séquence de test.



Overcurrent Characteristics Grabber

Cet outil charge une image scannée des caractéristiques et guide l'utilisateur suivant l'échelle des axes I et t et la numérisation successive des paires I/t par rapport à la courbe caractéristique de déclenchement affichée. Le tableau de valeurs résultant de la courbe des caractéristiques est ensuite transféré au module de test Overcurrent pour l'exécution de tests avec évaluations automatiques.

Standard Enhanced Complet

The state of the s

Distance

Le module Distance offre la possibilité de définir et réaliser des tests de relais de distance par évaluations des éléments d'impédance à l'aide de définitions de tirs uniques dans le plan Z avec un affichage graphique des caractéristiques.

Essential

Standard Enhanced Complet

Standard Enhanced Complet

Essential


Définition des caractéristiques du relais

Les caractéristiques et les paramètres nominaux du relais peuvent être définis rapidement et facilement par un éditeur graphique de caractéristiques. Les zones de démarrage, de déclenchement, les zones étendues et les zones de non-déclenchement sont déterminées à l'aide d'éléments prédéfinis. Une vue d'ensemble complète de toutes les zones définies est fournie. L'interface standard XRIO (voir page 11) permet d'importer directement les données du relais depuis le logiciel de paramétrage du relais (si pris en charge par le constructeur de relais). Les paramètres d'impédance pour les zones peuvent être saisis et affichés en valeurs primaires ou secondaires.

Définition des tests

Les tests sont définis dans le plan d'impédance par saisie des points de test dans un tableau. Ce tableau est divisé suivant les différentes boucles de défaut (A-N, B-N, C-N, A-B, etc.). On peut définir les points de test pour plusieurs boucles de défaut simultanément (par ex. pour toutes les boucles monophasées), ou séparément pour chaque boucle de défaut.

La réalisation d'un test se fait de manière séquentielle à partir du traitement des listes de points de test des boucles de défaut individuelles. La réaction du relais est comparée aux paramètres nominaux spécifiés et une évaluation automatique est effectuée (« réussi » ou « échoué »). Les résultats sont affichés graphiquement dans le plan d'impédance, et numériquement dans le tableau des points de test. L'affichage graphique des tensions et courants liés à un point de test ainsi que de la réaction du relais permet une analyse plus approfondie des résultats. Des mesures de temps entre les différents points peuvent être faites à l'aide des curseurs.

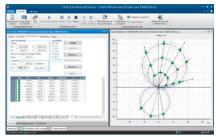
Advanced Distance

En plus des fonctionnalités de base du module Distance, Advanced Distance offre les fonctionnalités avancées suivantes :

- > Tests de recherche et de vérification des portées de zones
- > Configuration de test relative aux portées des zones et à l'angle de ligne (« tirs relatifs »)
- > Modèle de test d'impédance de source constante
- > Superposition de courants de charge

Tests de tir, de recherche et de vérification

Dans un test de tir, les points de test individuels sont ajoutés à un tableau de points de test et traités automatiquement (voir le module Distance).


The state of the s

Dans un test de recherche, les portées des zones sont déterminées automatiquement. Les transitions de zones sont recherchées le long de lignes du plan d'impédance, à l'aide d'un algorithme optimisé. Il est possible de définir un ensemble de lignes de recherche. Toutes les lignes de recherche définies sont enregistrées dans un tableau pour être traitées automatiquement.

Dans un test de vérification, les points de test sont automatiquement définis aux limites de tolérance des zones. La configuration s'effectue au moyen de lignes de test (lignes de vérification) similaires à celles d'un test de recherche; cependant, les points de test sont configurés uniquement aux intersections des lignes de vérification avec les tolérances des zones. Le test de vérification effectue un test général efficace du relais avec une durée de test optimisée. Il permet de vérifier rapidement si les spécifications sont remplies, en particulier pour les tests de routine.

Il existe diverses manières d'ajouter des points et des lignes de test. Il est possible de définir précisément les paramètres au moyen de saisies numériques ou en les indiquant directement sur le diagramme de la caractéristique. Un curseur magnétique permet de choisir les valeurs utiles. Des commandes avec la souris, des menus contextuels et des raccourcis clavier facilitent la saisie des données.

The second secon

Advanced Distance (suite)

Un test dans Advanced Distance peut se composer de tests de tir, de recherche ou de vérification. Lors de l'exécution du test, l'ensemble de la configuration de test obéit à une exécution séquentielle. Ce système polyvalent offre une grande variété de possibilités de test. Grâce à cette technologie, il est facile de se conformer à un grand nombre de conceptions et réglementations relatives aux tests.

Définitions de tests relatifs

La possibilité de définir des points de test par rapport à la caractéristique nominale du relais de distance (par exemple 90 % de la zone 1, 110 % de la zone 1, 90 % de la zone 2, ...) est une fonction puissante. Les points de test ne sont pas saisis en valeurs absolues R, X, Z ou d'angle, mais par rapport aux portées des zones et à l'angle de ligne. Cette fonction permet la création de modèles de test réutilisables qui s'adaptent aux paramètres réels du relais.

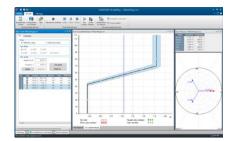
Modèle d'impédance de source constante

Outre les modèles à courant de test constant ou à tension de test constante, Advanced Distance propose le modèle de test à impédance de source constante qui est utile dans les cas particuliers où des paramètres tels que le rapport d'impédance du source (SIR) sont importants.

Courant de charge

Pour vérifier le comportement particulier de certains relais, accélération du déclenchement lorsqu'un courant de charge est présent, il est possible de superposer ce courant de charge au défaut appliqué.

Test de plusieurs boucles de défaut dans un seul module de test


Advanced Distance permet d'effectuer des tests de plusieurs boucles de défaut (L-N, L-L et L-L-L) dans un seul module de test. Pour tous les modes de test (tir, recherche, vérification), il existe plusieurs onglets avec un tableau de points de test différent pour chaque type de défaut. La configuration de test peut être entrée en fonction de la boucle de défaut ou définie simultanément pour plusieurs types de défaut.

Détermination de la caractéristique de distance

Si la caractéristique nominale d'un relais est inconnue ou si la forme de la caractéristique réelle doit être documentée, une fonction d'identification permet de générer automatiquement une approximation de la caractéristique reposant sur les résultats d'un test de recherche et/ou de tir. La caractéristique calculée peut être enregistrée et utilisée par la suite comme caractéristique nominale du relais.

Diagramme Z/t

Cette vue affiche la courbe de temps de déclenchement classé par rapport à l'impédance sur une ligne donnée. La ligne réelle est déterminée dans le plan d'impédance ou par sélection dans les tableaux des tests. Il est en outre possible de définir des points de test et d'afficher les évaluations dans le diagramme.

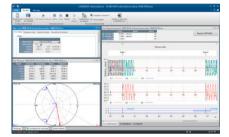
VI Starting

Le module VI Starting teste la caractéristique de démarrage de surintensité dépendante de la tension, utilisée dans de nombreux relais de distance. C'est de plus un outil idéal pour de nombreux tests portant sur des fonctions de surintensité et de minimum de tension. Pour chaque point de test spécifié, il détecte la valeur de montée, la valeur de retombée et le rapport.

Essential Standard Enhanced Complet

Essential Standard Enhanced Complet

П


П

Avantages

- > Recherche automatique de caractéristiques
- > Tests automatiques en fonction des caractéristiques spécifiées
- > Détermination automatique des valeurs de montée et de retombée
- > Caractéristiques séparées pour les démarrages phase-terre et phase-phase
- > Fonctionnement intuitif avec représentation graphique du test
- > Représentation claire des résultats sous forme de tableau et de graphique

Caractéristiques

- > Spécification facile des défauts avec type et grandeurs du défaut
- > Génération de grandeurs de test réalistes avec modèles pour défauts phase-terre, biphasés et triphasés
- > Vue Phaseur avec affichage numérique supplémentaire des grandeurs de test

Autoreclosure

La configuration des séquences de test pour tester un réenclencheur est à la fois efficace et rapide. Le module Autoreclosure définit automatiquement les conditions de test pour des cas de réenclenchement réussis et aussi pour simuler des défauts permanents. Les critères essentiels, comme le déclenchement final triphasé à la fin d'une séquence non réussie, sont aussi évalués automatiquement.

Les relais différentiels de surintensité, de distance ou de ligne avec fonction de réenclenchement peuvent être testés. Les défauts sont précisés par saisie du type et des grandeurs de défaut. Cette fonction est réalisée par la Calculatrice des défauts intégrée qui calcule les tensions et les courants de sortie pour les différents types de défaut. Le défaut peut être indiqué dans le plan d'impédance pour le test de la fonction de réenclenchement de protection à distance.

La séquence de test est affichée en fonction du temps et une liste d'événements avec évaluations est présentée.

Standard Enhanced Complet

Essential

П

Advanced Differential

Advanced Differential est un ensemble de modules de test formant une solution complète pour le test des protections différentielles. Avec un maximum de trois enroulements et neufs courants injectés, il convient particulièrement aux tests des protections différentielles de transformateur.¹

La modélisation complète de l'équipement protégé (par exemple transformateur de puissance), l'équipement secondaire (TC, connexion de TC) et les caractéristiques de relais fournissent les données de calcul permettant de faciliter le test. Le calcul automatique des courants de test supprime les tâches manuelles sources d'erreurs et qui prennent beaucoup de temps. Les tests de fonctionnement du relais deviennent simples, rapides et économiques.

Cette solution de test offre :

- > Des tests avec tous les types de défaut (L-N, L-L, L-L-L)
- > Des tests de tir à des points de test prédéfinis ou des tests de recherche
- > Une synchronisation par PTP, GPS ou IRIG B pour la réalisation de tests synchronisés, par exemple pour des essais aux deux extrémités d'une protection différentielle de ligne
- > L'évaluation des résultats par rapport aux caractéristiques nominales et aux tolérances
- > La génération de rapports avec représentation graphique des résultats sur la caractéristique de la protection différentielle.
- > Aucun blocage des fonctions liées à la tension nécessaire (important pour les tests de relais multifonctions)

Pour les transformateurs, le calcul automatique des courants à injecter repose sur :

- > les données du transformateur (valeurs nominales, indice horaire)
- > les rapports et connexions TC
- > le type défaut
- > La position du défaut (au primaire ou au secondaire)
- > le courant de charge
- > la correction d'amplitude et de phase

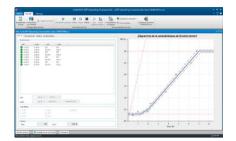
Pour le relais de protection, l'évaluation des valeurs mesurées repose sur :

- > la caractéristique de fonctionnement
- > le calcul du courant de retenue
- > l'élimination de la composante homopolaire

Les modules peuvent commander jusqu'à neuf courants pour tester confortablement la protection des transformateurs à trois enroulements.

Pour les applications différentes des transformateurs, telles que les tests de protection différentielle de générateur, les calculs sont effectués sans le modèle de transformateur. Le module Advanced Differential inclut également un module pour les applications de test monophasées, par exemple pour certains anciens relais électromécaniques.

Diff Configuration


Ce module simule des défauts traversants afin de vérifier que la protection est stable pour des défauts hors de la zone de protection. L'examen de la stabilité pouvant nécessiter d'observer plusieurs mesures, le module laisse à l'utilisateur la possibilité de contrôler les mesures avant de poursuivre le test. Les valeurs réelles données par le relais dans les conditions de défaut (courant différentiel et courant de retenue sur les 3 phases) peuvent être renseignées dans le rapport de test.

Tests du module Diff Configuration :

- > le câblage secondaire et les transformateurs intermédiaires (relais électromécaniques et numériques)
- > le réglage correct des paramètres de relais numériques (spécification de l'élément protégé);
- > l'élimination de la composante homopolaire

The state of the s

¹ Un système de test CMC offrant au moins six sorties de courant ou flux Sampled Values est nécessaire pour profiter pleinement des applications types d'Advanced Differential.

The control of the co

Advanced Differential (suite)

Diff Operating Characteristic

Le module Diff Operating Characteristic permet de vérifier la caractéristique et de différencier les défauts internes aux défauts externes à la zone protégée.

Les courants injectés dans le relais sont calculés à partir des paires de valeurs ldiff/Ipolar dans le plan ldiff/Ipolar. Ceci est directement relié à la façon dont les constructeurs définissent généralement la caractéristique de fonctionnement. La réaction correcte du relais, déclenchement ou non, est évaluée par rapport à la caractéristique spécifiée.

Diff Trip Time Characteristic

Ce module teste la dépendance du temps de déclenchement par rapport à l'amplitude du courant différentiel.

Il mesure les temps de déclenchement pour des courants différentiels donnés. Les courants de test réels pour les courants en mode différentiel spécifiés sont automatiquement calculés. Les points de test sont définis dans un diagramme de caractéristique des temps de déclenchement et les mesures sont évaluées par rapport à cette caractéristique.

Diff Harmonic Restraint

Le module Diff Harmonic Restraint vérifie la retenue en harmoniques correspondant aux courants d'appel et à la sur-magnétisation d'un transformateur. Les points de test sont définis dans le diagramme de caractéristique de blocage par harmoniques où le courant différentiel est tracé sur le contenu harmonique du courant testé.

On peut définir le déphasage initial entre la fondamentale et les harmoniques afin de simuler différentes conditions de courant d'appel.

Differential (monophasé)

Le module Differential (monophasé) offre une solution compacte de test pour les relais de protection différentielle de transformateurs, de lignes, de générateurs et de jeux de barres. Il réalise des tests monophasés de la caractéristique de fonctionnement (valeur d'activation, test de pente) et de la fonction de blocage du courant d'appel (blocage par harmoniques).

Il est possible d'aborder des paramètres de prise variables, comme pour certains anciens relais électromécaniques (par exemple Westinghouse HU ou GE BDD). Pour le test de la caractéristique de fonctionnement, des points de test sont définis dans le plan Idiff/Ipolar. Une interface utilisateur graphique facilite la définition du test.

Annunciation Checker

signal peut être affiché à différents endroits.

De nos jours, les équipements de protection émettent des douzaines de signaux d'état logiques et analogiques, qui sont lus et analysés en différents niveaux du système de contrôle commande. Chaque

Essential Standard Enhanced Complet

Le module Annunciation Checker aide l'ingénieur chargé de la mise en service à vérifier que l'affectation de chaque message à l'endroit prévu (procédure d'encodage) et le câblage ont été correctement effectués. Une spécification de test peut être créée avant le test et adaptée en toute souplesse pendant l'exécution d'un test. La spécification de test est faite dans un tableau de signaux/emplacements.

Les signaux stimulent un équipement de protection et sont générés sous forme de tirs ou d'états stables. L'ingénieur d'essai peut naviguer dans le tableau de test dans n'importe quel ordre (par exemple signal par signal ou emplacement par emplacement). Chaque cellule du tableau correspond à un indicateur de signal à un certain emplacement. La réponse de l'indicateur est évaluée automatiquement. Les résultats de test sont résumés dans un rapport de test sous forme de tableau.

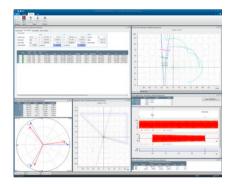
Le module Annunciation Checker est un outil de mise en service classique qui s'utilise avec l'opérateur SCADA central. Il offre un plan de travail (liste de points) et une bonne source de documentation.

Essential Standard Enhanced Complet

Essential Standard Enhanced Complet

Power/Advanced Power

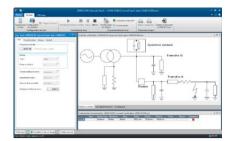
Les modules de test Power et Advanced Power sont utilisés partout où la visualisation et l'évaluation dans le plan P-Q complexe est utile ou indispensable. Les applications de test comprennent le délestage basé sur des critères de puissance ou de fréquence, des fonctions de stabilité comme la protection Q-V, le blocage de pompage et la protection des machines tournantes.



Power

_ • • •

Le module Power prend en charge les tests de tir et l'évaluation de base dans le domaine P-Q/S-φ.


- > Vue de la puissance complexe P-Q
- > Données absolues de puissance primaire, secondaire ou relative
- > Passage à l'axe P-Q dans les vues
- > Zones/éléments de puissance complexes
- > Seuil supplémentaire de tension et de courant pour l'évaluation automatique du test
- > Mode tension constante ou courant constant
- > Commande de sortie binaire pour les états de pré-incident, incident et rétablissement
- > Meilleure gestion de la tolérance avec tolérance d'amplitude absolue et relative plus tolérance d'angle
- > Tirs définis comme P-Q ou S-φ ou S-cos φ (ind/cap)

Advanced Power

En plus de toutes les caractéristiques du module Power, Advanced Power offre également des fonctions de test dynamiques et plus sophistiquées telles que des rampes lisses et des trajectoires à travers les caractéristiques, la correspondance des zones d'impédance dans le plan P-Q, la variation de fréquence et plus.

- > Rampes de puissance complexes
 - > Segments de rampe contigus (sans espace) pour les trajectoires de pompage, etc.
 - > Rampes P-Q linéaires (le long d'une ligne droite dans le plan P-Q)
 - > Rampes linéaires S-φ (suivant un arc défini dans le plan P-Q)
 - > Rampes lisses ou à incréments avec changement temporel linéaire en P, Q, S ou ϕ (résolution 1 ms)
 - > Évaluation de la rampe en fonction des temps et/ou des seuils et/ou selon les limites de la zone de protection définie
 - > Changement de fréquence linéaire pris en charge (par ex., accélération/décélération du générateur)
- > Vue Impédance (R-X)
 - > Les caractéristiques de l'équipement à tester définies dans le plan R-X, telles que la protection contre la perte d'exitation et la protection de distance, peuvent être transformées et affichées dans la vue de puissance P-Q
 - > Transformation de l'impédance en fonction du mode de fonctionnement (tension constante ou courant constant)
- > Réglage de la fréquence par état de test
- > Répétition de test avec analyse statistique
- > Courants reflétés/échelonnés pour un second triplet de courant afin d'éviter l'excitation d'éléments différentiels

Transient Ground Fault

Le module Transient Ground Fault permet de tester la direction de défaut terre, en régime transitoire ou permanent, sur des réseaux à neutre isolé ou compensé. Il produit les tensions et courants transitoires lors d'un défaut terre à partir d'une simulation de défaut avec un modèle de réseau prédéfini. La simulation de réseau permet d'effectuer des tests avec des formes d'ondes de courant et de tension

П

Essential Standard Enhanced Complet

Les valeurs de défaut, après stabilisation suite aux phénomènes transitoires, peuvent être appliquées de façon permanente pour tester la directionalité du relais de protection en régime stable. Pour permettre le test des relais pour des défauts amont ou aval, le défaut peut être appliqué à différents départs.

réalistes. Le modèle simule une ligne en dérivation. Les grandeurs calculées sont déterminées par les

Le module réalise une évaluation automatique des données mesurées en fonction de l'application spécifique de l'utilisateur. Les signaux de sortie sont affichés dans une vue distincte. Il peuvent aussi être affichés ou imprimés avec le rapport de test généré automatiquement. L'exécution du test peut être lancée manuellement ou synchronisée avec un signal de déclenchement externe.

Ce module est particulièrement utile pour :

- > configurer le relais
- > vérifier la caractéristique directionnelle du relais

paramètres de la ligne et du réseau d'alimentation.

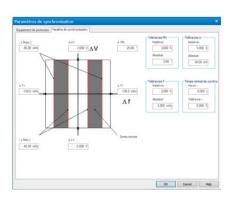
On peut simuler les systèmes triphasés comme les systèmes biphasés (par exemple pour des applications ferroviaires).

Pour une simulation complète des défauts à la terre, nous recommandons d'utiliser RelaySimTest (voir la page 30). Une licence Transient Ground Fault est incluse dans la licence RelaySimTest.

| The state of the

Synchronizer

Essential Standard Enhanced Complet

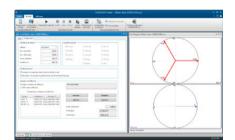

Le module Synchronizer simule deux systèmes à synchroniser : le système 1, représentant le réseau, est fixe en amplitude et en fréquence ; le système 2 est commandé en amplitude et en fréquence et représente le générateur ou le système à synchroniser.

L'utilisation du module en mode monophasé-monophasé (chaque système est représenté par une tension) est possible avec n'importe quel équipement de test CMC.

Le logiciel détecte automatiquement la commande de fermeture du disjoncteur provenant de l'équipement de synchronisation ou du relais synchro-check. En tenant compte du temps de fermeture du disjoncteur, il évalue si la synchronisation a lieu dans la fenêtre de synchronisation. Le contrôle de la deuxième sortie est variable et fonction de différents modes de test. La fréquence et l'amplitude peuvent être modifiées linéairement en fonction des constantes de temps de rampe du générateur.

Pour les équipements de synchronisation avec fonctions de réglage automatique, les commandes de réglage (f1, f1, V1) peuvent servir à contrôler la deuxième sortie de tension. Pour simuler le plus précisément possible le système réel, il existe des modèles dynamiques de générateur. On peut surveiller graphiquement les séquences de contacts binaires des commandes de réglages et les variations de tension et de fréquence, afin de suivre le déroulement de la synchronisation.

Un synchronoscope intégré affiche le vecteur rotatif de tension du système 2 à l'instant de synchronisation.



Essential Standard Enhanced Complet

	Loociitiai	Juliaula	Lilliancea	compic
Meter				

Assez souvent, la méthode habituelle de test des compteurs d'énergie consiste à utiliser une source de puissance stabilisée peu précise associée à un compteur de référence de haute précision. L'approche d'OMICRON simplifie considérablement les tests de compteur. Grâce à une technologie matérielle d'avant-garde, OMICRON propose des équipements de test si précis et si stables que la source de signal elle-même devient la référence et rend le compteur de référence inutile.

Le CMC 430 avec ses sorties de courant et de tension de haute précision injecte les signaux de test, et compte sur ses entrées les impulsions du compteur, réalisant ainsi un test en boucle fermée. Pour cela, des têtes de lecture optique pour la capture des impulsions émises par les compteurs (DEL infrarouges) sont prévues.

Le module Meter permet de réaliser des tests manuels et automatisés des compteurs d'énergie. Chaque ligne du tableau de test représente un point de test, effectué dans l'un des modes suivants :

- > Test de marche en charge : précision de l'unité de mesure (méthode de la puissance-temps)
- > Test mécanique : précision de l'ensemble du compteur, y compris l'affichage
- > Test du mécanisme de masque : test des registres internes de comptage
- > Test d'injection : vérification rapide (câblage, sens de rotation)
- > Test de marche à vide : pas de démarrage en l'absence de charge
- > Test de démarrage : démarrage à faible charge

Les colonnes du tableau contiennent les paramètres de test individuels, les critères d'évaluation définis (tolérance, comportement nominal) et le résultat du test, avec l'évaluation (réussi ou échoué). Pour les compteurs multifonctions ou les compteurs avec deux sens de rotation, il existe un tableau par fonction (onglets multiples). Les lignes de test peuvent être répétées plusieurs fois. Dans ce cas, l'écart-type est affiché avec l'erreur du compteur, ce qui permet de conclure sur la justesse du test lui-même. Il est possible de répéter individuellement des étapes de test (par exemple celles évaluées comme ayant échoué) après l'exécution du test sans que la totalité du test ait besoin d'être répétée.

Les grandeurs de test sont affichées sous forme graphique au moyen de diagrammes des phases de tension, de courant et de puissance. Le test peut être effectué avec n'importe quelle charge équilibrée ou déséquilibrée pour les compteurs monophasés (ou un seul élément de mesure d'un compteur triphasé), les compteurs à 3 fils et les compteurs à 4 fils.

Pour tester le comportement de compteurs avec composants harmoniques ou CC, les formes d'onde de signal de courant suivantes sont disponibles : sinusoïdale, sinusoïdale + harmoniques, sinusoïdale + CC

Dans une vue détaillée, tous les paramètres peuvent être définis indépendamment pour chaque phase. Les valeurs de puissance apparente, active et réactive sont indiquées pour chaque phase et pour la totalité du système tournant. Il est possible de tester les fonctions de compteur suivantes :

- > Importation/exportation Wh
- > Importation/exportation VArh
- > VAh
- > I²h et V²h (pertes en charge/à vide des transformateurs)
- > Qh (quantité-heure)

Les résultats d'un test automatique sont clairement résumés sous forme de tableau dans un rapport de test (une ligne par point de test). Pour un test manuel, il suffit de générer des grandeurs de test, sans définir de procédure de test complète, pour vérifier rapidement que les compteurs fonctionnent correctement. Dans ce mode, il est également possible de déterminer la constante d'un compteur si celle-ci n'est pas connue ou en cas de doute.

Il est également possible de tester avec un compteur de référence externe : dans le cas d'un test avec un compteur de référence, le CMC est utilisé comme source de courant et de tension. Pendant un test de marche en charge, les impulsions du compteur testé et celles du compteur de référence sont enregistrées. Ces dernières servent de référence pour le calcul d'erreur.

En outre, un test par rapport à une référence de 0,02 ou 0,01 %, réalisé avant l'exécution d'un test à l'aide des mêmes points de test, permet de charger des valeurs de correction et d'éliminer d'éventuelles erreurs provenant du CMC.

¹ CMC 500 avec entrées de transducteur DC IN, CMC 430

Transducer Essential Standard Enhanced Complet

Le module Transducer permet de tester manuellement ou automatiquement n'importe quelle fonction de mesure d'un transducteur avec un CMC¹, par exemple :

- > Puissance réelle (monophasée ou triphasée)
- > Puissance réactive (monophasée ou triphasée)
- > Puissance apparente (monophasée ou triphasée)
- > Fréquence
- > Courant
- > Tension (phase-terre, phase-phase)
- > cos **φ**
- > Déphasage (V-I, V-V, I-I)
- > Grandeurs CC (courant, tension, puissance)
- > Courant moyen avec signe

Le module permet de tester les types de caractéristique suivants :

- > Linéaire
- > Composée
- > Quadratique
- > Symétrique ou non symétrique

Le mode « test manuel » permet de réajuster un transducteur de mesure. Toutes les grandeurs d'entrée du transducteur peuvent être générées. En outre, il est aisé de passer d'un point à l'autre d'une caractéristique où l'erreur du transducteur est indiquée en fonction de la valeur d'entrée.

Un test automatique inclut la réalisation séquentielle d'un tableau prédéfini de points de test, ainsi que les résultats et leur évaluation. Ces points de test représentent la valeur d'entrée du transducteur de mesure. En option le comportement du transducteur en cas de modification de la tension ou de la fréquence d'entrée peut être étudié.

L'erreur d'un transducteur est déterminée par comparaison du signal théorique et du signal de sortie réellement mesuré. Les erreurs relatives et absolues ainsi que les erreurs de l'équipement sont déduites et affichées sous forme de diagramme. Si plusieurs itérations sont effectuées, l'erreur moyenne est calculée.

Les points de test individuels ou les séquences de test peuvent être ajoutés au tableau de points de test prévus. Le tableau comprend : la valeur d'entrée, la valeur de sortie, l'erreur de l'équipement et l'évaluation (test réussi ou échoué).

Pendant une exécution automatique du test, les points de test sont traités séquentiellement. La caractéristique de transfert comprenant tous les points de test (réussis ou échoués) est affichée sous forme graphique. Le test peut également être contrôlé manuellement si des affichages à distance doivent être contrôlés lors de l'exécution du test.

Il est possible de tester des transducteurs de mesure de systèmes à trois fils (circuit Aaron) ou à quatre fils. Les courants et les tensions peuvent être générés sous forme de signaux sinusoïdaux purs ou superposés avec des harmoniques ou des composants CC. En général, les transducteurs de nouvelle génération ne présentent plus de sortie mA ou VCC classique. À la place, ils transmettent les données mesurées via un protocole de transfert et/ou affichent les valeurs sur un écran. Le mode « test en boucle ouverte » permet de tester ce type de transducteur. Pour tester des transducteurs classiques avec sorties mA ou VCC, un CMC équipé d'entrées de mesure CC est nécessaire.

¹ CMC 500 avec entrées de transducteur DC IN, CMC 430

Standard Enhanced Complet

П

Essential


П

П

PQ Signal Generator

Le besoin croissant de vérifier les fonctionnalités et la précision des compteurs/analyseurs de qualité d'énergie exige un équipement d'étalonnage adapté. Le module PQ Signal Generator transforme un CMC 430 avec sorties de tension et de courant de grande précision en un outil d'étalonnage générant tous les types de phénomènes liés à la qualité d'énergie conformément à la norme CEI 61000-4-30 :

- > Fréquence réseau
- > Tension d'alimentation
- > Flicker
- > Chutes et élévations
- > Interruption de tension
- > Tensions transitoires
- > Déséquilibre de tension
- > Harmoniques
- > Interharmoniques
- > Variations rapides de la tension

Le module PQ Signal Generator dispose d'une interface puissante et conviviale qui permet également de combiner différents phénomènes de qualité d'énergie pour des tests complets.

S'appuyant sur les tableaux 1 et 2 de la norme CEI 61000-4-15:2010, le module offre un choix de points de test prédéfinis pour la gravité du flicker de courte durée P_s, et la sensation du flicker instantané P_{ing}.

Des signaux de tension et de courant avec superposition d'harmoniques (jusqu'à la 60_e harmonique à 50 Hz ou la 50^e harmonique à 60 Hz) et d'inter-harmoniques jusqu'à 3 kHz peuvent être générés. L'amplitude des harmoniques peut être saisie en valeur absolue ou en pourcentage de la valeur fondamentale. Pour des applications avancées, il est même possible de générer des harmoniques fluctuantes. Si seule une interharmonique est utilisée, la résolution de la fréquence est de 1 mHz; de plus, on peut définir une combinaison quelconque d'interharmoniques avec des valeurs de Hertz en nombre entier.

Un exemple de la polyvalence du module est la génération de brèches cycliques. La profondeur des brèches et l'angle d'apparition peuvent être ajustés indépendamment; la largeur minimum de la chute transitoire entre les brèches est de 300 µs. Cette fonction peut servir à simuler la perturbation du système constitué d'un moteur commandé par un thyristor.

Le module PQ Signal Generator permet de créer des séquences de test complètes. Les différentes étapes peuvent être regroupées et exécutées à plusieurs reprises suivant un nombre de boucles définissable par l'utilisateur. Si l'équipement à tester est équipé d'une sortie binaire, elle peut servir à évaluer automatiquement les résultats de test. Si aucun contact d'alarme n'est disponible, une évaluation manuelle peut aussi être réalisée.

Le module PQ Signal Generator permet à l'équipement de test CMC de prendre en charge les tests conformément à la norme CEI 62586. Cette norme définit les méthodes de test pour vérifier la conformité à la norme CEI 61000-4. Une bibliothèque de tests complète est disponible pour prendre en charge l'exécution des essais de type exigés par ces normes.

Par le passé, le test des équipements liés à la qualité d'énergie exigeait de très lourds investissements dans du matériel de test distinct. Avec PQ Signal Generator, le test des analyseurs de qualité d'énergie peut être effectué avec l'équipement de test CMC de manière simple et rapide.

Pack de tests des équipements de mesure

Les modules Meter, Transducer et PQ Signal Generator peuvent également être commandés sous forme de pack (P0000411).

NetSim Essential Standard Enhanced Complet □ □ ■ ■

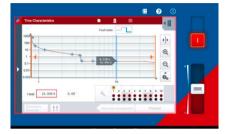
Le module NetSim permet aux utilisateurs de Test Universe de tester le comportement des équipements de protection en cas de défaut réaliste au moyen de signaux transitoires. Les configurations de réseaux standard avec un paramétrage simple permettent des simulations rapides et rudimentaires avec un nombre limité de cas de test.

Exemples d'application:

- > Tests de relais en conditions réelles
- > Évaluation des paramètres du relais pour les applications de protection complexes
- > Tests des algorithmes de protection avancés
- > Défauts sur les lignes simples et parallèles (avec couplage mutuel), les lignes tronquées, les lignes à trois bornes
- > Tests de bout en bout avec une synchronisation horaire PTP, GPS ou IRIG-B
- > Oscillation du réseau/pompage (synchrone et asynchrone)
- > Tests de protection différentielle incluant la saturation de TC

Autres fonctions:

- > Répétition automatique des tests avec variation des paramètres
- > Vue d'impédance incluant les zones de distance
- > Exportation COMTRADE additionnelle des formes d'onde simulées


AWA4WW4WW4WW4WW4WW4

Pour un test complet basé sur les paramètres du réseau, nous recommandons d'utiliser RelaySimTest (voir la page 30). Une licence NetSim est incluse dans la licence RelaySimTest.

CMControl P

CMControl P – Tests manuels simples

CMControl P est un logiciel destiné à piloter des équipements de test CMC. Il est spécialement conçu pour effectuer des tests manuels simples des équipements de protection et de mesure. Il est disponible en tant qu'application pour PC ou tablette Windows et en tant qu'appareil de pilotage dédié sur le panneau avant. Les outils de test incorporés et les modèles de défaut intégrés garantissent des tests rapides et pratiques :

- > Contrôle du câblage : utilisé pour vérifier rapidement le câblage et les entrées de mesure de l'équipement à tester ; prend également en charge l'utilisation du contrôleur de polarité CPOL3
- > Montée/retombée : permet de contrôler les seuils des relais de protection
- > Direct : toutes les sorties de l'équipement de test peuvent être contrôlées individuellement
- > Compteur : pour étalonner les compteurs d'énergie et réaliser des tests de démarrage et de marche à vide
- > Temps : les temps de déclenchement et autres temps de réaction d'un relais de protection peuvent être vérifiés
- > Réenclenchement : il est possible de contrôler les temporisations liées aux cycles d'un réenclencheur
- > Caractéristiques de temps : teste des relais possédant plusieurs seuils temporisés ou des caractéristiques de temps particulières
- > Transducteur: pour vérifier et évaluer automatiquement la précision d'un transducteur¹
- > Multimètre : les entrées multifonctions des équipements de test CMC peuvent être utilisées pour des mesures analogiques¹

CMControl P App

L'application CMControl P App fonctionne sur un PC ou une tablette Windows standard pour piloter votre équipement de test CMC. Un mini adaptateur Wi-Fi/USB dédié permet un contrôle sans fil des équipements de test CMC.²

Téléchargez l'appli de démo gratuite :

> pour votre PC ou tablette Windows à partir du portail client OMICRON

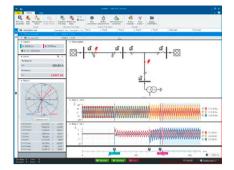
Console de pilotage CMControl P

La console de pilotage robuste CMControl P est disponible en deux tailles et peut être fixée à l'équipement de test CMC ou utilisée comme équipement de commande portatif flexible. Il possède un écran tactile de 7" et une face arrière magnétique pour le fixer sur des surfaces en acier.

Références commerciales

CMControl P peut être commandé avec un équipement de test CMC autonome ou en combinaison avec un pack Test Universe. Les packs Standard, Amélioré et Complet contiennent une licence pour l'appli CMControl P App (voir la page 9).

	CMControl P App	CMC ³ + CMControl P App	CMC ³ + CMControl P
CMC 500	-	-	-
CMC 430	D0000244	P0005881	-
CMC 310	P0000344	P0005873	P0005872


Pour plus d'informations, veuillez consulter la page www.omicronenergy.com/cmcontrol-p ou la brochure du produit CMControl P.

¹ CMC 430

² Le Wi-Fi est soumis à des contraintes techniques et juridiques. Pour de plus amples informations, contacter votre agence locale OMICRON ou partenaire commercial.

³ Sans Test Universe

RelaySimTest

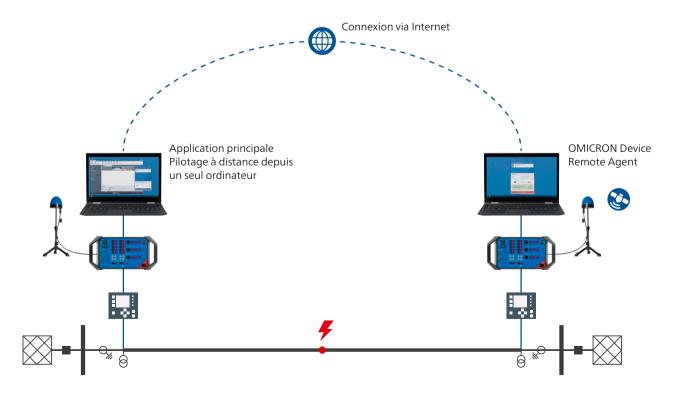
RelaySimTest – Tests de protection basés sur le système

Essential Standard Enhanced Complet

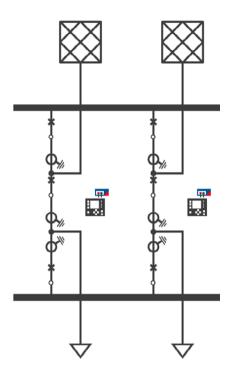
RelaySimTest est une solution logicielle de tests de protection basés sur le système avec des équipements de test OMICRON, qui adopte une approche novatrice et orientée vers l'avenir : le test est indépendant du type et du fabricant du relais et de ses paramètres. Au lieu de cela, RelaySimTest se concentre totalement sur le bon comportement du système de protection, grâce à la simulation réaliste de défauts sur le système électrique.

Comparé aux méthodes de test conventionnelles (comme les tests basés sur les paramètres avec Test Universe), RelaySimTest peut détecter nettement mieux les erreurs dans les paramètres, la logique et la conception du système de protection. Cela permet aux essayeurs de vérifier le bon comportement de leur système de protection plus rapidement et avec une qualité de test bien supérieure qu'auparavant. En complément des tests avec Test Universe, RelaySimTest contribue à la fiabilité du réseau électrique.

Fonctionnement simple et flexible


Grâce à des modèles de test prédéfinis, le démarrage est simple et rapide dans des situations de test standard. Grâce à l'éditeur de réseau convivial, la simulation devient possible même pour des réseaux complexes. Le bon comportement du système de protection peut être facilement vérifié dans tous les scénarios en plaçant des défauts et en vérifiant la réactions des disjoncteurs. Les signaux de test calculés peuvent être analysés à l'avance et exécutés via l'équipement de test.

Tests à distance


Par exemple, tester une protection de ligne est très simple: RelaySimTest calcule automatiquement les signaux de test et démarre son exécution synchronisée depuis un PC. L'équipement de test peut être synchronisé par une horloge Grandmaster Clock PTP (par ex. CMGPS 588) ou par un CMIRIG-B. Ensuite, toutes les réactions du système de protection sont évaluées de façon centralisée. Cela rend non seulement l'exécution plus rapide et plus facile, mais vous aide également dans le dépannage. L'équipement de test peut également être piloté à distance à partir d'un PC via une connexion Internet.

Tests des schémas et de logique

Les tests de fonctionnement logique d'un système de protection, nécessitent une séquences complexe d'états déclenchés par les ordres de fermetures ou d'ouverture donnés par le relais. Grâce à la méthode brevetée d'« itérations en boucle fermée », RelaySimTest peut créer automatiquement la séquence de test en fonction des commandes d'ouverture et de fermeture. Les tests, par exemple la coordination d'une fonction de réenclenchement automatique dans le système, deviennent ainsi simples et transparents.

Domaines d'application

Poste

- > Protection de jeu de barres : n'importe quel type de topologie de jeu de barres peut être modélisé. Injection simultanée dans des unités de travée. Simulation de la position du sectionneur et des défauts sur chaque nœud y compris les défauts dans la zone morte du couplage.
- > Sectionnement de barres: test avec six entrées de courant. Pas de modification de câblage en cours de test. Vérification de la coordination des deux relais par exemple pour la protection défaillance disjoncteur.
- > Réseaux isolés et compensés : test du système de protection pour les défauts à la terre transitoires et intermittents et les défauts évolutifs.
- > Protection différentielle de transformateur : simulation des transformateurs à 2 ou 3 enroulements, changeurs de prises et déphaseurs. Cela valide la configuration de la protection du transformateur.

Transmission

- > Téléprotection et différentielle de ligne: Tests de la protection y compris de ses canaux de communication. Contrôle de la séquence de test à partir d'une extrémité sans besoin de coordination téléphonique.
- > Réenclenchement automatique : test simple des séquences de réenclenchement automatique pour un ou plusieurs cycles et pour des cycles mono ou triphasés. Test de coordination simultanée pour plusieurs relais.
- > Lignes à trois extrémités : contrôle des équipements de tests situés à chaque extrémité de la ligne sans avoir à coordonner par téléphone ces essais.
- > Lignes parallèles avec couplage mutuel: simulation du couplage mutuel entre les segments de ligne à mesure qu'ils surviennent dans votre topologie réelle. Test des sous-portées et des dépassements quand des lignes parallèles sont en service ou mises à la terre.
- > Oscillation de puissance et perte de stabilité: tests du déclenchement ou du blocage de la protection dans des conditions d'oscillation de puissance et de perte de stabilité. Combinaison d'oscillations de puissance avec les défauts et les réactions du disjoncteur.
- > Lignes à compensation série : tests de coordination complexe de zone sur les lignes à compensation série notamment leur influence sur la sélectivité temporelle.

Distribution

- > Schéma de boucle de distribution automatisé: injection simultanée dans chacun des équipements de commande de réenclencheur du schéma de boucle. Test de toute la séquence de fonctionnement depuis l'isolation du défaut jusqu'à la reprise de service.
- > Schémas de blocage inversé et tests de sélectivité

Test en laboratoire et en usine

- > Tests de performance conformes à la norme CEI 60255-121
- > Pré-qualification de nouveaux types de relais

Remarque: toutes les applications de test peuvent être combinées de manière flexible.

Équipements de test et accessoires pris en charge

- > CMC 500, CMC 430, CMC 850, ARCO 400
- > CMGPS 588 et CMIRIG-B (pour injection synchronisée)
- > Extension binaire ISIO 200

Référence	Contenu de la livraison
P0006620	Une licence pour RelaySimTest
P0006621	Logiciel pour tests répartis, incluant deux licences pour RelaySimTest plus deux CMGPS 588
P0006611	Licence RelaySimTest pour ARCO 400, permettant de réaliser des tests répartis synchronisés pour réenclencheurs complexes.

Une licence RelaySimTest contient également les licences pour Transient Ground Fault et NetSim (voir la page 28).

Pour plus d'informations, veuillez consulter le site www.omicronenergy.com/relaysimtest ou la brochure du produit RelaySimTest.

EnerLyzer, TransView

EnerLyzer

EnerLyzer transforme l'équipement de test CMC en équipement multifonctions de mesure, d'enregistrement et d'analyse. Chacune de ses entrées binaires peut être configurée comme entrée de mesure analogique et peut alors mesurer directement des tensions jusqu'à 600 Veff. L'acquisition des courants s'effectue par les shunts de mesure ou les pinces de courant. L'équipement de test CMC peut être utilisé pour les tests conventionnels en même temps que pour les mesures avec EnerLyzer.

Essential Standard Enhanced Complet

П

Large gamme d'applications

EnerLyzer offre une large gamme de vues et d'outils d'analyse : les mesurandes directes et dérivées peuvent être affichées sous forme de valeurs numériques (vue Multimètre) ou de diagrammes des phases. L'analyse harmonique facilite l'examen simple et rapide du résidu harmonique et indique la valeur de distorsion harmonique totale (THD). Le CMC peut également être utilisé comme enregistreur de transitoires multicanal. TransView (voir la page 33) est inclus pour permettre une analyse plus détaillée des valeurs transitoires ainsi enregistrées. Ces outils permettent de localiser rapidement et facilement les défauts et d'évaluer les paramètres système correspondants.

Applications typiques:

- > Dépannage lors de la mise en service ou des tests de maintenance des équipements de protection
- > Enregistrement des transitoires lors des opérations de commutation
- Analyse des événements de courant d'appel de transformateur (par exemple, analyse des harmoniques pour ajuster le blocage)
- > Analyse des caractéristiques de démarrage des moteurs (courbes courant/tension, détermination des durées de démarrage)
- > Mesure et analyse pendant la synchronisation du générateur avec la fonction synchro-check
- > Diagnostic des caractéristiques de temps des disjoncteurs et de leurs contacts auxiliaires
- > Analyse des perturbations du système et de la qualité de la puissance (par exemple THD, harmoniques)
- > Fonctions de mesure générales (par exemple, contrôles de validité des tensions, des courants, de la puissance)

En fonction du type de CMC, deux versions d'EnerLyzer sont disponibles :

EnerLyzer (CMC 500¹, CMC 430)

Fonctionnalité de mesure hybride

EnerLyzer offre une fonctionnalité complète pour effectuer des mesures dans les postes numériques. Les Sampled Values (CEI 61850-9-2) et les signaux conventionnels peuvent être mesurés simultanément et affichés ensemble sur une ligne temporelle commune.

Vue Oscilloscope et analyse des tendances en temps réel

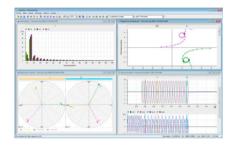
Les valeurs instantanées et les courbes de tendance sont affichées en temps réel; les éventuels défauts sont immédiatement visibles. Les grandeurs mesurées sont affichées clairement de différentes manières (valeurs numériques, courbes de tendance ou sous forme de diagrammes des phases) et dans une série de vues. L'affichage des mesures peut être personnalisé en fonction des besoins.

Enregistrement et analyse de transitoires

La fréquence d'échantillonnage maximale est de 40 kHz. Cette fréquence d'échantillonnage permet des enregistrements d'une durée maximale de 20 minutes. Ces enregistrements peuvent ensuite être analysés immédiatement dans EnerLyzer. Des conditions de déclenchement simples ou complexes peuvent être définies pour l'enregistrement de défauts ou de phénomènes d'appel dans le réseau d'énergie électrique. Les données enregistrées peuvent être exportées au format CSV ou COMTRADE (C37.111-1991/1999 et 2013), si un examen plus approfondi est nécessaire.

¹ Option d'entrée analogique nécessaire.

Essential Standard Enhanced Complet

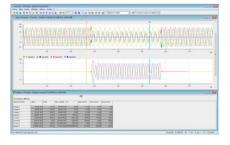

EnerLyzer Classic

Enregistrement de tendance

Les grandeurs importantes (par exemple, la valeur efficace des courants et des tensions, de la fréquence ou la puissance) sont représentées dans un graphique en fonction du temps. La sélection de vitesses de mesure plus longues permet d'effectuer une analyse sur des périodes plus étendues (par exemple, des semaines, si la vitesse de mesure est en secondes). Les données enregistrées peuvent être exportées au format CSV pour un traitement ultérieur.

Enregistreur de transitoires

La fréquence d'échantillonnage maximale est de 28 kHz, tandis que la durée d'enregistrement maximale dépend du nombre de canaux utilisés et de la fréquence d'échantillonnage sélectionnée (un canal à 3 kHz produit une durée d'enregistrement supérieure à 5 minutes). Les enregistrements sont stockés au format de fichier COMTRADE (C37.111-1991/1999) et peuvent être analysés dans TransView.

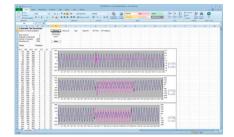


TransView

TransView permet de visualiser et d'analyser les signaux analogiques et binaires qui ont été enregistrés par les enregistreurs de transitoires (enregistrement interne de relais, équipement de test CMC avec EnerLyzer Classic/EnerLyzer, DANEO 400, enregistreur de défauts en option). Le logiciel traite les données enregistrées graphiquement et utilise les données de mesure pour calculer d'autres grandeurs du réseau d'énergie électrique, telles que les impédances, les vecteurs de puissance, les valeurs efficaces, etc.

Les valeurs sont affichées sous forme de valeurs primaires ou secondaires dans une plage de vues :

- > Signaux temporels : les signaux analogiques et binaires sont affichés en fonction du temps. Les grandeurs analogiques peuvent être affichées sous forme de valeurs instantanées ou de valeurs efficaces
- > Diagrammes des phases : cette vue montre les grandeurs mesurées et calculées (par exemple, les composants symétriques) sous forme de vecteurs complexes en des points donnés dans le temps.
- > Diagrammes des points: cette vue affiche des grandeurs complexes sous forme de diagrammes des points. Les diagrammes des points d'impédance peuvent être représentés en même temps que les zones de déclenchement des relais de distance. Les paramètres des zones peuvent être importés à l'aide du format XRIO.
- > Harmoniques : cette vue montre les valeurs efficaces des harmoniques des grandeurs sélectionnées sous forme de graphiques à barres. Les harmoniques sont déterminées à l'aide d'une Transformation de Fourier discrète (DFT) sur une période complète.
- > Tableau des valeurs : la vue Tableau montre les valeurs de plusieurs signaux en fonction des emplacements des marqueurs. Les signaux sont disposés en lignes et les colonnes contiennent les valeurs correspondantes.



TransView permet d'analyser simultanément plusieurs enregistrements, par exemple ceux des deux extrémités d'une ligne. TransView prend en charge les données au format COMTRADE (IEEE C37.111-1991/1999 et 2013).

Remarque: TransView peut être utilisé

- > avec EnerLyzer Classic (aucune commande séparée nécessaire)
- > avec Test Universe (sans EnerLyzer Classic/EnerLyzer) [P0006837]
- > comme application autonome sans CMC ou Test Universe [P0006602]

CMEngine

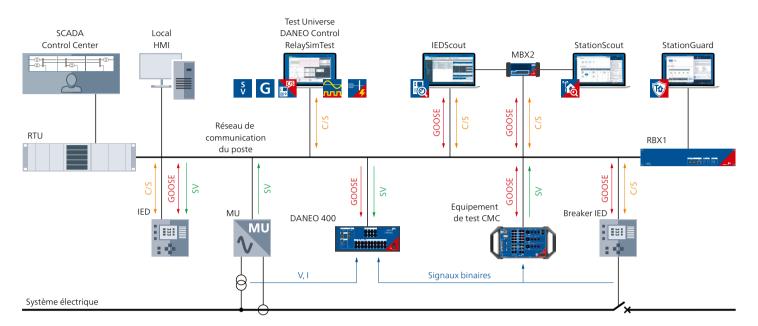
CMEngine - Interface de programmation

Essential Standard Enhanced Complet

CMEngine est une interface de programmation avec documentation libre. Cette interface permet d'accéder à l'ensemble des fonctionnalités du matériel de l'équipement de test CMC et d'écrire des programmes répondant aux besoins spécifiques du client. Les équipements de test CMC et leurs amplificateurs et accessoires associés peuvent notamment être intégrés dans un environnement de test dédié et contrôlés par les applications que vous utilisez.

Les programmes peuvent être écrits dans l'un des langages de programmation standard tels que C/C++, Visual Basic, C# ou LabView. Avec CMEngine, l'équipement de test CMC peut également être piloté par des programmes standard qui prennent en charge Microsoft Automation (par exemple, Microsoft Excel).

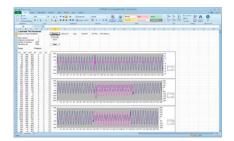
Les applications types incluent les tests de réception en usine par les fabricants d'équipements de protection. Dans les installations de tests fixes, où les équipements à tester sont soumis non seulement à des tests électriques, mais aussi thermiques ou mécaniques, l'ingénieur d'essai en production en série a la possibilité d'utiliser la même interface utilisateur pour toutes les applications. L'utilisation de CMEngine augmente également le degré d'automatisation et donc le niveau d'efficacité.


Avantages

- > Interface pour interagir avec les équipements de test CMC
- > Accès direct à toutes les fonctionnalités matérielles
- > Programmation avec les langages de programmation standard ou une application par lots (CMEngine CLI)
- > Intégration d'équipements de tests CMC à un environnement de test propriétaire
- > Création de formes d'ondes spéciales

Tests CEI 61850 et cybersécurité

OMICRON propose aux techniciens de protection et SCADA un ensemble de solutions de test avancées dans les environnements CEI 61850. Les différents outils se complètent les uns les autres et couvrent un large éventail d'exigences: tandis que Test Universe et RelaySimTest sont utilisés spécifiquement pour les tests de protection, d'autres produits mentionnés dans cette section, tels que StationScout, IEDScout et DANEO 400, sont axés sur la communication. Ils permettent aux utilisateurs d'observer, de suivre et d'analyser le flux de données sur le réseau de communication, utilisées pour les protections et le contrôle commande.


StationScout

Les tests d'automatisation, de commande et de communication SCADA dans le système de contrôle-commande numérique (CCN) sont aussi longs que les tests de protection et la vérification des mises en correspondance des RTU/passerelles, voire plus encore. StationScout simplifie ces tests et réduit significativement les efforts nécessaires. Utilisé sur la nouvelle plate-forme de poste numérique MBX2, StationScout visualise et analyse la communication d'un CCN de manière inédite. La topologie est déterminée à partir des données de conception au format SCL (langage de configuration système) et affichée intuitivement pour le technicien SCADA. Outre l'importation des mises en correspondance des RTU/passerelles CEI 104, le temps passé à vérifier les mises en correspondance est considérablement réduit. StationScout aide les concepteurs et les techniciens d'essai tout au long du cycle de vie d'un CCN au moyen d'une combinaison de fonctions de simulation et de test.

Référence	Contenu de la livraison
P0009385	Licence Smart Overview StationScout Logiciel StationScout pour les tests manuels des systèmes de contrôle-commande numérique
P0009386	Licence Commissioning StationScout Logiciel StationScout pour les tests et la mise en service des systèmes de contrôle-commande numérique

StationScout peut être utilisé avec les plates-formes cybersécurisées MBX2 ou RBX1. Pour plus d'informations, veuillez consulter le site www.omicronenergy.com/stationscout ou la brochure du produit StationScout.

Tests CEI 61850 et cybersécurité

IEDScout

IEDScout est l'outil idéal pour observer le fonctionnement des équipements CEI 61850. Il fonctionne avec les appareils provenant de n'importe quel fournisseur et peut être utilisé pour l'analyse et la simulation d'IED. Alors que StationScout (voir la page 35) est utilisé pour obtenir une vue d'ensemble du système de contrôle-commande numérique et tester ses fonctions logiques et de communication, IEDScout permet de tester la fonctionnalité CEI 61850 d'un seul IED. Son domaine d'application s'étend du développement d'IED au dépannage en passant par les tests de réception en usine et la mise en service.

Essential Standard Enhanced Complet

Référence	Contenu de la livraison
P0006493	IEDScout pour PC
P0009384	IEDScout sur plate-forme MBX2
P0001331	IEDScout sur plate-forme RBX1

StationGuard

StationGuard surveille le réseau pour détecter les cyber-menaces et les problèmes de fonctionnement sur le poste et le process bus. Il déduit un modèle de système de toutes les communications en important le fichier SCL du poste. Les équipements qui ne sont pas inclus dans le fichier SCL peuvent être décrits facilement à l'aide d'un ensemble de modèles de fonctionnement.

StationGuard analyse toutes les communications sur le réseau et déclenche une alarme si un appareil communique avec un protocole ou d'une façon qui n'est pas conforme au modèle de fonctionnement. À l'aide de ce modèle de communications de fonctionnement, StationGuard détecte non seulement les cybermenaces sur les réseaux de postes, mais également les erreurs de configuration, les retards excessifs de réseau GOOSE ou de traitement ainsi que les problèmes de synchronisation horaire.

Référence	Contenu de la livraison
P0006779	StationGuard Cybersécurité et surveillance fonctionnelle des postes.
	Abonnement StationGuard Chaque équipement StationGuard est associé à un contrat de service pour bénéficier de nouvelles fonctionnalités, de mises à jour de sécurité et d'une assistance experte.

StationGuard peut être utilisé avec les plates-formes matérielles cybersécurisées RBX1 pour une installation permanente ou MBX2 pour une utilisation mobile ainsi que comme machine virtuelle VBX1. Pour plus d'informations, veuillez consulter le site www.stationguard.com ou la brochure du produit StationGuard.

MBX2

Le matériel industriel MBX2 est équipé d'un stockage crypté, d'un module de cryptoprocesseur et d'un firmware sécurisé. Le MBX2 est l'interface cybersécurisée qui relie l'ordinateur exécutant IEDScout, StationScout ou StationGuard au réseau du poste.

RBX1

La plate-forme RBX1 19 pouces est spécialement conçue pour être installée dans des postes. Elle est équipée d'interfaces Ethernet optiques (SFP), d'alimentations électriques pour différentes plages de tension CC et d'un cryptoprocesseur sécurisé pour stocker les certificats et les clés de cryptage en toute sécurité.

Tests de protection CEI 61850

GOOSE Configuration

Essential Standard Enhanced Complet

Cette licence active un équipement de test CMC pour la communication via les messages GOOSE sur le réseau du poste.

La mise en correspondance et la configuration sont réalisées dans Test Universe et RelaySimTest. Les paramètres de configuration peuvent être importés à partir de fichiers SCL.

Une fois les messages GOOSE configurés dans le module GOOSE Configuration de Test Universe, l'équipement de test CMC interagit avec les données d'état dans les messages GOOSE comme s'ils étaient câblés aux entrées et sorties binaires du CMC: les messages GOOSE reçus (souscrits) actionnent les entrées binaires et les changements d'état des sorties binaires lancent la publication des messages GOOSE. Cela permet d'utiliser facilement les messages GOOSE dans tous les modules Test Universe concernés.

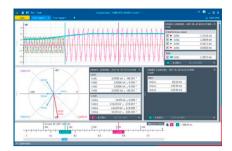
Sampled Values Configuration

Cette licence permet à un équipement de test CMC de simuler les merging units publiant des flux Sampled Values conformément aux normes CEI 61869-9 et CEI 61850-9-2 Éd.2.1.

Les paramètres de configuration peuvent être importés à partir de fichiers SCL. Test Universe prend en charge jusqu'à 3 flux, RelaySimTest jusqu'à 4 flux.

Dans Test Universe, les Sampled Values sont configurés et mis en correspondance dans la Configuration du matériel puis utilisés par tous les modules d'un plan de test OCC. La réutilisation des plans de test est ainsi facilitée lors du passage entre Sampled Values et des sources de tension et de courant classiques.

IEC 61850 Client/Server


Le module IEC 61850 Client/Server de Test Universe effectue des tests de protection en utilisant les rapports (MMS) SCADA CEI 61850. Cela permet de vérifier que l'IED transmet les rapports corrects au système SCADA. Le module a accès à tout le data model de l'IED et peut interroger n'importe quel data attribute pendant le test. Le module contrôle également le mode de fonctionnement de l'IED pour isoler l'IED testé.

Packs CEI 61850

Les outils et modules CEI 61850 sont disponibles dans des combinaisons pratiques, en fonction de l'application prévue.

Pack	IEC 61850 C/S	GOOSE Configuration	Sampled Values Configuration	IEDScout pour PC	IEDScout sur le MBX2
CEI 61850 Package 1 P0006594	•	•		•	
CEI 61850 Advanced P0006595	•	•	•	•	
CEI 61850 Package 2 P0009745	•	•	•		
CEI 61850 Advanced + MBX2 P0006599	•	•	•		•

Tests CEI 61850 et cybersécurité

DANEO 400

Le DANEO 400 est un multimètre et enregistreur de défaut pour les signaux CEI 61850 et les signaux conventionnels (tensions, courants, signaux d'état binaires câblés). Le système de mesure hybride mesure les deux types de signaux et fournit des informations afin d'évaluer leur bonne coordination. Les informations relatives à l'état opérationnel et à la communication aident les utilisateurs à surveiller les processus de l'installation.

Un système de mesure contenant plusieurs équipements DANEO 400 fournit une image temporelle des signaux d'un système de protection et contrôle-commande. Tous les équipements d'acquisition de données sont synchronisés avec précision. Les équipements DANEO 400 sont configurés et pilotés à l'aide du logiciel pour PC DANEO Control. L'interface Web intégrée donne accès à des fonctionnalités dédiées

Référence	Contenu de la livraison
P0006500	DANEO 400 Basic Analyseur de signaux pour les automatismes des postes électriques. Mesure et enregistrement de signaux conventionnels (analogiques et binaires)
P0006501	DANEO 400 Standard Analyseur de signaux hybride pour les automatismes des postes électriques. Mesure et enregistrement de signaux conventionnels (analogiques et binaires) et du trafic provenant des réseaux de communication dans les réseaux électriques (GOOSE et Sampled Values).

Pour plus d'informations, veuillez consulter la page www.omicronenergy.com/daneo400 ou la brochure du produit DANEO 400.

ISIO 200

L'ISIO 200 est une extension d'entrée/sortie binaire simple et polyvalente destinée aux systèmes de contrôle-commande numérique (CCN). Dans le cas des équipements de test CMC, il étend les entrées et sorties binaires, tandis qu'en tant que composant autonome dans un CCN, il reçoit ou émet des signaux binaires supplémentaires.

Pour plus d'informations, voir la page 47.

Solution de gestion et de maintenance pour les systèmes de protection

ADMO est un logiciel de base de données facile à utiliser destiné à la planification, la gestion et la documentation centralisées de toutes les activités de test et de maintenance des systèmes de protection. Les utilisateurs peuvent optimiser leur stratégie de maintenance, se conformer aux normes (par exemple, NERC PRC-005-2 pour les fournisseurs d'énergie en Amérique du Nord) et réussir les audits.

En plus des relais de protection, ADMO permet également aux utilisateurs de gérer les systèmes de communication, les circuits de contrôle, les transformateurs de courant et de tension, les disjoncteurs, l'alimentation CC de postes, les compteurs d'énergie et les transformateurs. Il enregistre les emplacements, les données des appareillages, les cycles de maintenance et tous les documents de test associés, fournissant ainsi une vue d'ensemble claire de toutes les activités de maintenance prévues, ainsi que l'état de maintenance actuel des divers équipements. Les documents de test et informations de maintenance stockés sont disponibles rapidement.

Caractéristiques essentielles

- > Gestion centralisée et structurée des documents de test, des tests de mise en service et de maintenance, ainsi que des paramètres de protection
- > Vue d'ensemble de l'état de maintenance de tout le système de protection et des appareillages primaires tels que les transformateurs de courant
- > Gestion efficace des tâches pour les essais site et le paramétrage des protections
- > Suivi et analyse des événements de perturbation du réseau
- > Visualisation et mise à jour aisée du plan de sélectivité des protections; mise à jour des plans de sélectivité temporelle (sélectivité temporelle ADMO)
- > Analyse pratique des données ADMO avec l'application Web InSight pour optimiser la gestion du cycle de vie des appareillages, les investissements et la planification des ressources humaines
- > Prise en charge des exigences modernes en matière de sécurité informatique

InSight1

InSight est la réponse puissante à la complexité croissante des systèmes et équipements en matière d'analyse de données. Il analyse et évalue les données des activités de maintenance et des éléments d'ADMO, et permet de prendre des décisions basées sur les données pour développer des stratégies de maintenance intelligentes, optimiser les activités de planification et réduire le risque d'amendes et d'obligations liées à la non-conformité aux règles.

ADMO Box

ADMO Box vous aide à coopérer avec vos sous-traitants de façon efficace et directe. Il permet une sous-traitance facile, sûre et rapide des opérations de gestion des équipements, en s'assurant que toutes les données sont en place. Votre prestataire de service peut débuter la maintenance sans tarder, plus besoin de préparation fastidieuse, d'installation d'ADMO ni de licence.

Gestion des équipements de test

La section Gestion des équipements de test d'ADMO permet aux utilisateurs d'organiser facilement les équipements de test. Ils peuvent ajouter les équipements de test qu'ils utilisent pour leurs tâches de maintenance, enregistrer les données propres à l'équipement de test, programmer l'étalonnage des équipements de test et suivre les événements de réparation. La section Gestion des équipements de test est incluse dans tous les packs Test Universe. La section Gestion des équipements de test est incluse dans tous les packs Test Universe (voir la page 9).

Options de licence ADMO

ADMO est disponible en édition Client/Server, qui permet à plusieurs utilisateurs de travailler avec ADMO simultanément et de récupérer des données relatives aux équipements et à la maintenance à tout moment sur site et au bureau. Les données sont stockées et mises à jour via un serveur SQL central, afin d'être mises à disposition sur l'ensemble du réseau. Une copie hors ligne de la base de données ADMO permet également aux utilisateurs d'accéder aux documents de test lorsqu'aucune connexion au réseau n'est possible.

ADMO light

Tous les packs Test Universe (voir page 9) contiennent une licence gratuite d'ADMO light, qui offre toutes les fonctionnalités, mais est limitée à 50 équipements. ADMO light peut être mis à niveau à la version ADMO complète à tout moment.

www.omicronenergy.com/admo

¹ InSight est disponible uniquement pour les clients disposant d'un contrat de service ADMO

Accessoires

Accessoires de l'équipement de test CMC standard

Les accessoires suiv	vants font partie de la livraison CMC standard mais peuvent également être ément.		CMC 500	CMC 430	CMC 310	CMC 850
	Description	Référence	5	5	5	5
	Cordon d'alimentation spécifique au pays avec connecteur C13, 2,5 m (8 ft)	P0000279	1	1	1	1
Ò.	Câble Ethernet, 1,5 m (5 ft), RJ45 Pour connecter des équipements de test CMC avec connexion Ethernet à un PC ou au réseau	E1664300		1	1	2
	Câble Ethernet, 3 m (10 ft), RJ45 Pour connecter des équipements de test CMC avec connexion Ethernet à un PC ou au réseau	E1664400	1	1		2
0	Câble de connexion USB, 2 m (6,6 ft), A/C Pour connecter un équipement de test CMC avec connexion USB à un PC	P0007555	1			
	Câble de connexion USB, 2 m (6,6 ft), A/B Pour connecter un équipement de test CMC avec connexion USB à un PC	B1021101		1	1	
	Cordons de test avec fiches de sécurité 4 mm (0,16 in), 3 m (10 ft) 1 000 V, CAT II/32 A (8 x rouges, 4 x noirs)	P0007815 P0007816	12			
	Cordons de test avec fiches de sécurité 4 mm (0,16 in), 2 m (6,6 ft) 1 000 V, CAT II/32 A (6 x rouges, 6 x noirs)	E0201800 E0201900		12	12	
44	Adaptateurs de borne souples	E0439201	12	12	12	
	Cavaliers pour cordons de test, 6 cm (2,4 in)	E0439300	8			
	Adaptateurs de cordons de test souples avec gaine rétractable, 5 cm (2,0 in) 600 V (6 x rouges, 6 x noirs)	E0542801 E0542901		12	12	
	Câble de terre avec pince de batterie et fiche $1 \times 6 \text{ mm}^2$, 6 m (20 ft)	B1889700	1			
	Câble de terre avec pince de batterie et cosse de câble M6 (0,24 in) $1 \times 6 \text{ mm}^2$, 6 m (20 ft)	B0349701		1	1	
	Sac d'accessoires	P0007627	1			
	Sacoche pour appareil	voir la page 42		1	1	1

Kit d'accessoires de câblage pour CMC

P0010657

	Description	Caractéristiques	Quantité	Référence
	Adaptateurs de cordons de test souples avec fiche de sécurité 4 mm (0,16 in) pour les connexions à des bornes étroites	600 V, CAT II/32 A	12	E2106200
	Adaptateurs de cordons de test souples avec gaine rétractable, 5 cm (2 in) pour les connexions à des prises non sécurisées	600 V, CAT II/32 A	6 rouges, 6 noirs	E0542801 E0542901
	Câbles souples pour raccorder des triplets de courant en parallèle jusqu'à 32 A ou pour mettre en court-circuit des entrées binaires	1 000 V, CAT II/32 A	8	E0439300
	Pince crocodile pour broches de contact ou boulons à visser	1 000 V, CAT II/32 A	4 rouges, 4 noirs	E0343100 E0343600
400	Adaptateurs de borne souples pour bornes à visser	1 000 V, CAT II/32 A	12	E0439201
	Adaptateurs de borne pleins pour bornes à visser	1 000 V, CAT II/32 A	12	E0202200
=	Adaptateurs à cosse pour vis M4	1 000 V, CAT II/20 A	20	E0542600
7	Adaptateurs à cosse pour vis M5	1 000 V, CAT II/20 A	10	E0542700
	Cordon de test pour équipements à tester mis à la terre, par ex. dans un environnement de laboratoire	1 000 V, CAT II/32 A	1	P0010292
	Attaches de câble (Velcro) noires, 150 mm (6 in)		10	E0544100
	Sac d'accessoires		1	P0007627

Câble de générateur triphasé

CMC 500 CMC 430

/C 310 CMC

Simplifie les connexions triphasées entre l'un des modules de sorties analogiques du CMC 500 et l'équipement à tester.

- > Type de connecteur aux deux extrémités : fiches de sécurité Ø 4 mm
- $> 4 \times 2.5 \text{ mm}^2, 3 \text{ m} (10 \text{ ft})$
- > Tension nominale: 600 V, CAT II
- > Courant nominal: 3 x 30 A en continu/3 x 60 A avec cycle de service (activation 2 s/désactivation 10 s)

Codes couleur jaune, vert, violet, bleu rouge, jaune, bleu, noir Référence (Config) P0008045 (YGVB) P0008045 (RYBB)

Câble combiné de générateur

CMC 500

CMC 430

CMC 310

CMC 850

- 1ère extrémité: prise combinée (8 pôles)
 2e extrémité: fiches de sécurité Ø 4 mm
- > 8 x 2,5 mm2, 3 m (10 ft)
- Tension nominale: 300 V, CAT IIICourant nominal: 3 x 32 A en continu

Codes couleur jaune, vert, violet, bleu rouge, jaune, bleu, noir Référence B1328000 B1328100

Cordons de test de sécurité avec fusible

P0010656

CMC 500

MC 430

CMC 310

CMC 850

Les cordons de test de sécurité avec fusible sont utilisés pour prévenir tout danger si une erreur dans le montage de test provoque un court-circuit dans le câblage secondaire d'un transformateur de tension. Des courts-circuits peuvent se produire en raison d'erreurs dans le montage de test, par ex.

- > Le disjoncteur miniature du TT ou les borniers de sectionnement n'ont pas été ouverts avant le câblage.
- > L'équipement de test a été connecté du mauvais côté du disjoncteur miniature du TT ou des borniers de sectionnement.

Accessoires

Mallettes de transport

Ces mallettes de transport robustes avec intérieur en mousse dure sont conçues pour résister aux fortes contraintes de transport et conviennent à un transport sans surveillance.

Pour	CMC 500	CMC 430	CMC 310, DANEO 400
	anguar and a second		
Description	Mallette de transport robuste avec roulettes et poignée télescopique	Mallette de transport robuste avec roulettes, plaques latérales connectables et poignée télescopique	Mallette de transport robuste avec roulettes et poignée télescopique
Dimensions (L x H x P)	667 x 429 x 421 mm (26,3 x 16,9 x 16,6 in)	476 x 476 x 502 mm (18,7 x 18,7 x 19,7 in)	570 x 490 x 415 mm (22,4 x 19,3 x 16,3 in)
Poids	10,8 kg (23,8 lb)	17,6 kg (38,8 lb)	8,4 kg (18,5 lb)
Capacité	Équipement de test, accessoires	Équipement de test, accessoires	Équipement de test, CMControl-3, accessoires
Référence	P0007932	B1636100	B0679500

Sacoches souples et valise

Les sacoches souples et la valise/le sac à dos offrent une protection contre la poussière et de la surface de l'équipement de test pendant le transport, mais ne conviennent pas à un transport sans surveillance.

Pour	CMC 500	CMC 430	CMC 310	CMC 850	CMC 430, CMC 310
Description	Sacoche pour appareil	Sacoche pour appareil avec compartiments pour accessoires	Sacoche pour appareil avec* ou sans CMControl-3	Sac pour appareil avec compartiments pour accessoires	Valise/sac à dos à roulettes, avec poignée extensible et bandoulière
Inclus dans la livraison standard	Non	Oui	oui	oui	non
Référence	P0007626	E1635901	E0659401* E0650201	E1805500	E1636000

Kit de montage pour rack 19 pouces

P0010658

CMC 500

MC 430

CMC 310

CMC 810

Ce kit de montage remplace la poignée de l'équipement de test et permet d'intégrer des racks 19 pouces. L'équipement de test exige 5 unités de rack (5U) de hauteur.

Mini adaptateur USB sans fil

E1636800

CMC 500

CMC 430

CMC 310

CMC 850

Pour le pilotage à distance d'un équipement de test :

Normes prises en charge

IEEE 802.11b/g/n

Dimensions (L x H x P) 14,9 x 7,1 x 18,5 mm (0,6 x 0,3 x 0,7 in)

CMGPS 588 – Unité de synchronisation horaire pilotée par GPS

P0006433

CMC 500

CMC 430

CMC 210

CMC 850

L'unité CMGPS 588 est une référence de temps pilotée par GPS, intégrée dans une antenne, optimisée pour une utilisation à l'extérieur. Elle fonctionne avec une horloge Grandmaster PTP (IEEE 1588/PTP) et n'exige pas de configuration. Elle est automatiquement prête à fonctionner très peu de temps après l'alimentation de la CMGPS 588 par câble Ethernet (PoE). La distance entre le CMGPS 588 et le CMC peut être étendue jusqu'à 95 m (312 ft) en utilisant des câbles d'extension (un câble Ethernet standard de 15 m (49 ft) plus deux enrouleurs de câble Ethernet robustes de 40 m (131 ft)).

www.omicronenergy.com/cmgps588

CMIRIG-B - Interface IRIG-B

P0006386

CMC 500

CMC 430

CMC 310

CMC 850

Le CMIRIG-B est un boîtier d'interfaçage qui permet de connecter des équipements émettant ou recevant le protocole IRIG-B ou des signaux PPS avec des équipements de test CMC. En option, l'unité CMGPS 588 peut être utilisée comme référence de temps.

www.omicronenergy.com/cmirig-b

OTMC 100p - Horloge Grandmaster PTP

P0006508

CMC 500

CMC 430

CMC 210

CMC 850

L'OTMC 100p est une horloge Grandmaster IEEE 1588/PTP synchronisée par GPS pour la synchronisation horaire d'IED et d'équipements de test via les réseaux locaux des postes. Le profil de puissance (IEEE C37.238:2017) et le profil de réseau (CEI/IEEE 61850-9-3:2016) sont pris en charge.

www.omicronenergy.com/otmc100

TICRO 100 - Convertisseur temporel PTP

P0000604

CMC 500

CMC 430

CMC 31

CMC 850

Le TICRO 100 est un convertisseur PTP (Precision Time Protocol) pour dériver de nombreux codes de temps à partir de paquets IEEE 1588/PTP reçus par Ethernet. Cela permet de synchroniser facilement les équipements non compatibles PTP avec l'horloge mère d'une infrastructure IEEE 1588/PTP.

www.omicronenergy.com/ticro100

EMCON 200 - Convertisseur de média Ethernet

P0006504

CMC 500

CMC 430

CMC 310

CMC 850

L'EMCON 200 connecte les réseaux à base de fibre optique et de cuivre (100 MBits/s et 1 GBit/s). Les modules SFP rendent la configuration très flexible.

La synchronisation horaire dans les réseaux avec IEEE 1588/PTP est maintenue. Le câble réseau alimente l'EMCON 200 par Ethernet (Power over Ethernet).

www.omicronenergy.com/emcon200

TWX1 - Test des relais à onde de propagation

P0006385

CMC 500

CMC 430

TMC 310

CMC 850

Le TWX1 est la solution de terrain idéale pour tester des relais de protection à ondes de propagation et des localisateurs de défaut. Les signaux transitoires et les ondes progressives sont automatiquement calculés. Le TWX1 est piloté par RelaySimTest.

www.omicronenergy.com/twx1

CPOL3 - Contrôleur de polarité et de câblage

P0009398

CMC 500

CMC 430

CMC 310


CMC 850

Le contrôleur de polarité et de câblage CPOL3 vérifie le câblage d'une série de bornes.

- > Affichage de la tension efficace réelle
- > Mode « Oscilloscope » pour une sécurité supplémentaire
- > Contrôle de la polarité des transformateurs de courant et de tension (TC et TT)
- > Contrôle de la polarité des bornes et du câblage sur l'intégralité des circuits TC et TT
- > Remplacement de la méthode de test utilisant pile et galvanomètre (pour éviter une saturation du TC et donc un possible dysfonctionnement de la protection).
- > Évaluation rapide et facile grâce à l'indication vert/rouge

www.omicronenergy.com/cpol3

LLX1 - Tests d'appareils avec entrées de capteurs

P0006381

CMC 500

CMC 430

CMC 310

CMC 850

Le LLX1 est la solution idéale pour tester les appareils de protection et de mesure avec entrées de capteurs de tension et de courant.

En plus de simuler les tensions et courants de phase, le LLX1 est également capable de simuler la tension résiduelle et le courant pour les entrées dédiées.

Un grand nombre de câbles est proposé pour connecter aisément le LLX1 à différents appareils équipés de connecteurs et brochages spécifiques :

Référence	Type de câble	Convient pour	Type de connecteur
B1960000	LAB1	ABB Relion 615, 620 (avec SIM0002) ABB REX640 (avec SIM1901)	RJ45
B1960100	LAB2	ABB REF542plus	2x Twin-BNC
B2139500	LAB3	ABB CSU-2	RJ45
B1960300	LSE1	Schneider Electric Sepam	RJ45
B1960500	LSE2	Schneider Electric Easergy Schweitzer Engineering Laboratories SEL-751	2x RJ45
B1960200	LSI1	Siemens Siprotec 4 Compact	RJ45
P0008935	LST1	Appareils conformes à la norme CEI 61869-10/-11, par ex., ABB Relion 615, 620 (avec SIM0005) ABB REX640 (avec SIM1902) Siemens 7SY82 Sprecher Automation SPRECON-EDIR	RJ45

Liste non exhaustive des câbles disponibles. Pour la liste complète, veuillez consulter notre site Web: www.omicronenergy.com/llx1

LLX2 - Interface bas niveau pour amplificateurs externes

P0006382

CMC 500

CMC 430

CN (C 210

CMC 850

Le LLX2 fournit une interface bas niveau standard pour contrôler les amplificateurs externes tels que le CMS 356 et d'autres accessoires bas niveau avec un connecteur de type LEMO à 16 broches.

LLX3 - Sorties bas niveau polyvalentes

P0006383

CMC 500

CMC 430

CMC 31

CMC 850

Le LLX3 fournit des sorties bas niveau avec prises 4 mm standard. Cela en fait une solution flexible pour d'autres applications telles que des montages expérimentaux.

CMLIB A - Connecteur de signal bas niveau

CMC 850

Le CMLIB A permet de connecter les sorties de signaux bas niveau d'un CMC à des fins de mesure et de contrôle. Il peut également servir à raccorder les entrées d'un CMS 356 à des sources de signaux tiers.

Les câbles de connexion peuvent être commandés séparément

- > Câble BNC/BNC (E0306400)
- > Câble BNC/banane 4 mm (0,16 in) (E0224500)
- > Cordons de test pour relais Electric Easergy avec entrées de capteur (B1734800)

RIB1 - Boîtier d'isolation bas niveau

P0006393

P0006378

CMC 500

110 120

CMC 310

CMC 850

Le RIB1 est utilisé pour isoler les signaux basse tension TBTS des équipements de test CMC. Il est connecté entre les sorties bas niveau de l'équipement de test et l'équipement à tester et fournit une isolation renforcée aux sorties bas niveau d'un équipement de test CMC.

CMLIB 7Sx8 – Adaptateur d'interface

P0006380

CMC 500

CMC 430

CMC 310

CMC 850

Le CMLIB 7Sx8 est un adaptateur d'interface pour la connexion des relais de protection Siemens Siprotec 4 Compact équipés d'entrées de capteur (p. ex. Siprotec 7SJ81) sur les sorties bas niveau des équipements de test CMC. Le CMLIB 7Sx8 convertit les signaux de sortie de bas niveau du CMC en des signaux différentiels (équilibrés). En outre, l'adaptateur fournit également le système de tension simulée.

CMLIB REF6xx - Adaptateur d'interface

P0006379

CMC 500

CMC 430

CMC 3

CMC 850

Le CMLIB REF6xx est un adaptateur d'interface pour la connexion des relais de protection ABB Relion équipés d'entrées de capteur (par ex., REF615 ou REX640) sur les sorties bas niveau des équipements de test CMC. Pour la simulation de capteurs Rogowksi, le CMLIB REF6xx convertit les signaux de sortie bas niveau du CMC en signaux différentiels (équilibrés). En outre, l'adaptateur fournit également le système de tension simulée.

REF 54x - Câble d'interconnexion pour relais REF 54x

B0559600

CMC 500

MC 430

CMC 3

CMC 850

Ce câble de connexion est prévu pour connecter les entrées de capteur des relais de protection ABB de la série REF 54x (sauf REF542 SCU) aux sorties bas niveau d'un équipement de test CMC.

ISIO 200 - Borne d'entrées/sorties binaires

P0006498

CMC 500

CMC 430

IC 310

CMC 850

L'ISIO 200 est utilisé pour ajouter aux équipements de test CMC huit entrées binaires et huit sorties binaires, dans deux groupes de potentiel. Il communique à l'aide de messages GOOSE CEI 61850 et est configuré via l'interface Web intégrée.

Le module d'accompagnement ISIO Connect permet d'utiliser jusqu'à trois équipements ISIO 200. Les applications de plus de trois ISIO 200 sont prises en charge par le module de configuration GOOSE (licence séparée requise).

www.omicronenergy.com/isio200

RXB1 - Extension de sorties binaires

P0006392

CMC 500

CMC 430

CMC 310

CMC 850

Le RXB1 est utilisé pour ajouter aux équipements de test CMC les sorties de relais binaires 5 à 8. Chaque canal d'extension de sortie binaire est constitué d'un contact normalement ouvert (N.O.) et d'un contact normalement fermé (N.F.).

VBO3 - Transformateur de tension

P0006276

CMC 500

CMC 430

CMC 310

CMC 850

Le VBO3 est un transformateur de tension triphasé qui étend la plage d'application d'un CMC jusqu'à 600 V (L-N).

Plage de tension primaire 0 à 300 V, triphasé Plage de tension secondaire 0 à 600 V, triphasé

Fréquence nominale

50/60 Hz

22.14

Puissance nominale 33 VA par phase

CMTAC 1 - Adaptateur CA/CC pour entrée binaire de CMC

P0006278

CMC 500

CMC 430

CMC 310

CMC 850

Les systèmes de production décentralisée, tels que les centrales éoliennes, ne sont souvent pas équipés de systèmes de batteries pour fournir une alimentation électrique auxiliaire en courant continu. Dans ces installations, l'usage de signaux CA pour les sorties binaires est devenu une alternative.

Au moyen d'un CMTAC 1, le signal CA est converti en signal CC afin de pouvoir connecter cette sortie à une entrée binaire d'un équipement de test CMC.

¹ Peut se déclencher sur les tensions alternatives sans CMTAC 1

Accessoires

CMC 500 ¹ CMC 430 CMC 310 CMC 8

Pince de courant alternatif et continu active avec sortie de tension pour mesurer les courants avec EnerLyzer.

Plage de mesure : 5 mA à 60 A CA/80 A CC

Diamètre max. du câble : 11,8 mm

Alimentation électrique : Batterie de 9 V (incluse) ou port micro-B USB (chargeur USB non inclus)

CMC 500 ¹

CMC 430

CMC 850

Le C-Shunt est un shunt de précision pour les mesures de courant avec EnerLyzer. Il est possible de l'insérer directement dans les entrées binaires/analogiques d'un équipement de test.

	Shunt C-Shunt 1	Shunt C-Shunt 10
Courant maximal	32 A en continu	12,5 A en continu
Résistance électrique	0,001 Ω	0,01 Ω
Tolérance de résistance	0,1 %	0,1 %
Référence	B0620201	B0620301

ARC 256x - Simulateur d'arc électrique

P0006279

MC 500

CMC 430

CMC 310

CMC 850

Pour tester les systèmes de protection contre les arcs, le simulateur ARC 256x produit un arc électrique au moyen d'un tube à décharges au xénon.

¹ CMC 500 avec option d'entrée analogique

Têtes de lecture optique

Tête de lecture optique pour les tests de relais

P0009603

CMC 500

CMC 430

MC 310

CMC 850

Les LED indiquent des informations d'état pertinentes pour tester un relais de protection, contrairement à ses sorties binaires. À l'aide d'une tête de lecture optique, un tel signal peut être converti en signal binaire et utilisé dans une séquence de test, par ex., pour l'évaluation ou une condition de déclenchement. La tête de lecture optique est fournie avec l'adaptateur de tête de lecture optique ASH1 pour une connexion à l'entrée binaire de l'équipement de test.

Têtes de lecture optique pour les tests de compteur

CMC 500

CMC 430

CMC 310

CMC 850

Tête de lecture optique pour les compteurs à LED à impulsions optiques

L'OSH 256 est une tête de lecture optique utilisée pour détecter l'état des LED à impulsions optiques des compteurs d'énergie. Il peut être fixé sur des surfaces lisses à l'aide d'une ventouse ou d'un adhésif en caoutchouc réutilisable. Il est adapté à une plage de longueur d'onde de 550 nm à 1 000 nm. Lorsque la tête de lecture optique est utilisée avec le CMC 500 ou le CMC 430, l'adaptateur ASH1 est nécessaire pour la connexion aux entrées binaires.

Description	Convient pour	Référence
OSH 256 + ASH1	CMC 500, CMC 430	P0009600
OSH 256	CMC 310, CMC 850	P0006391

Tête de lecture optique pour compteurs à fixation magnétique

Le SH 2015 est une tête de lecture optique pour la détection de l'état des LED à impulsions optiques des compteurs d'énergie. Il est équipé d'un aimant rond pour fixer l'unité au compteur et est adapté aux longueurs d'ondes entre 610 nm et 1 000 nm. Lorsque la tête de lecture optique est utilisée avec le CMC 500 ou le CMC 430, l'adaptateur ASH1 est nécessaire pour la connexion aux entrées binaires.

Description	Convient pour	Référence
SH 2015 + ASH1	CMC 500, CMC 430	P0009601
SH 2015	CMC 310, CMC 850	P0006389

Tête de lecture optique pour compteurs électromécaniques à marques de rotor

La tête de lecture optique TK 326 est adaptée à la lecture des marques de rotor des compteurs électromécaniques. Elle peut également être utilisée pour détecter l'état des LED à impulsions optiques dans une plage de longueur d'onde de 450 nm à 950 nm. Lorsque la tête de lecture optique est utilisée avec le CMC 500 ou le CMC 430, l'adaptateur ASH1 est nécessaire pour la connexion aux entrées binaires.

Description	Convient pour	Référence
TK 326 + ASH1	CMC 500, CMC 430	P0009602
TK 326	CMC 310, CMC 850	P0006390

Ensemble CMLIB B P0006377

MC 500 CMC 430 CMC 310 CMC 850

Le CMLIB B fournit des bornes de connexion supplémentaires pour la prise en charge de montages de test avancés :

- > Tests avec compteurs de référence nécessitant deux entrées d'impulsions
- > Accès aux sorties transistor binaires d'un équipement de test CMC

Solutions de test supplémentaires

En plus des produits décrits dans cette brochure, les équipements OMICRON suivants s'appliquent également aux applications de test des équipements de protection et de mesure :

CMS 356

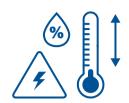
Le CMS 356 est un amplificateur comportant 6 sorties courant et 4 sorties tension qui peut être utilisé en combinaison avec des équipements de test CMC ou en conjonction avec des simulateurs de réseaux numériques en temps réel.

www.omicronenergy.com/cms356

COMPANO 100

Le COMPANO 100 est un outil de test convivial, léger et alimenté par batterie pour tous les types de tests de base sur des réseaux électriques (production, transmission et distribution) ainsi que dans le ferroviaire et l'industrie.

www.omicronenergy.com/compano100


ARCO 400

La solution universelle, robuste et légère pour les tests triphasés avec adaptateurs de test intelligents pour tout type de réenclencheur offre la façon la plus rapide et simple de tester toutes les fonctions d'un réenclencheur. De plus, il est également possible d'effectuer des tests synchronisés par GPS sur des réseaux de distribution automatisés.

www.omicronenergy.com/arco400

Comment nous créons de la valeur pour nos clients ...

Normes de sécurité les plus strictes

Jusqu'à 72 heures de tests de chauffe

Essais individuels de série complets pour tous les composants

Innovation

Plus de 200 développeurs améliorent sans cesse nos solutions

Réinvestissement de plus de 15 % dans la R&D

Jusqu'à 80 % de temps gagné grâce à l'automatisation

Assistance

Assistance technique professionnelle

Étalonnage et réparations rentables

23 bureaux dans le monde

Connaissances

Plus de 300 formations de l'Academy chaque année

Événements et formations organisés chez OMICRON

Articles et notes d'application gratuits

OMICRON est une société internationale qui travaille avec passion sur des idées visant à rendre les réseaux d'énergie électrique sûrs et fiables. Nos solutions novatrices sont conçues pour relever les défis actuels et futurs de notre industrie. Nous allons toujours plus loin pour donner plus de moyens à nos clients : nous réagissons à leurs besoins, fournissons une assistance locale remarquable et partageons notre expertise.

Au sein du groupe OMICRON, nous étudions et développons des technologies innovantes pour tous les domaines des réseaux d'énergie électrique. Lorsqu'il s'agit de tests électriques pour des équipements moyenne et haute tension, de tests de protection, de solutions de tests de postes numériques et de solutions de cybersécurité, les clients du monde entier font confiance à la précision, à la rapidité et à la qualité de nos solutions conviviales.

Fondée en 1984, OMICRON s'appuie sur des décennies d'expertise approfondie dans le domaine de l'ingénierie de l'énergie électrique. Une équipe dévouée de plus de 1250 employés fournit des solutions avec une assistance 24 h/24 et 7 j/7 sur 23 sites dans le monde et travaille pour des clients dans plus de 170 pays.

Pour un complément d'informations, une documentation supplémentaire et les coordonnées précises de nos agences dans le monde entier, veuillez consulter notre site Internet.