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The Transformer “Mechanical Integrity Tests”

• The two transformer “mechanical integrity tests” are,

1) The SFRA Test

2) The Leakage Reactance Test

• These two tests are used to detect mechanical changes within the main tank of a power transformer 

(e.g. winding movement or winding deformation)

• The measurements provide information about the physical position of the components within the 

main tank of a power transformer (i.e. the position of the core, the windings, the insulation, the 

space, etc.)

• Both measurements are “fingerprint” measurements – In general, the measurements should not 

change over time
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The SFRA and Leakage Reactance Tests

• The two measurements are not typically utilized as “routine tests”, but are intended to be 

“situational tests”, and are typically performed,

1) Before and after transporting a transformer, to check for “shipping damage”

2) When there is a reason to suspect that there is an issue with the transformer (e.g. after a 

fault event, or due to an increase in combustible gases in the main tank oil)

• At a minimum, one of the two measurements should be performed, and documented, for future 

reference (but of course, performing, and documenting, both measurements is the “best practice”)

• The hope is that a fault detected by one of the two measurements, can be confirmed by the other 

measurement - In other words, the two tests complement each other well
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SFRA – Failure Mode Detection

1)    Mechanical Winding Movement

 Radial Winding Deformation (aka “Hoop Buckling”)

 Axial Winding Deformation (aka “Telescoping”)

 Bulk Winding Movement

2)    Compromised Insulation

 Turn-to-Turn Insulation Failure

 Winding-to-Ground Insulation Failure

3)    Core Problems (e.g. a “loss of core ground” connection)

4)     Severe Discontinuities or “Bad Connections” Involving the Current Carrying Path
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The Sweep Frequency Response Analysis (SFRA) Test

• The most sensitive electrical diagnostic test, to mechanical changes within a power 

transformer

• An SFRA trace is a “fingerprint” of a transformer’s main tank construction (i.e. the 

position of the core, the windings, the insulation, the space, etc.)
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1. Inject an AC Voltage into one end of a transformer winding (Vin)

2. Measure the AC Voltage that comes out the other end of the transformer 

winding (Vout)

3. Calculate the ratio of the Output Voltage and the Input Voltage (Vout / Vin)

4. Repeat the measurement over a broad frequency range (e.g. from 20Hz to 

2MHz)

SFRA – Test Procedure
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• Three coaxial test leads are used to perform the SFRA measurement

1. Voltage source lead (Yellow)

2. Voltage input measurement lead - Vin (Red)

3. Voltage output measurement lead - Vout (Blue)

SFRA - Test Connections
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• Three coaxial test leads are used to perform the SFRA measurement

 The Yellow and Red leads are connected in parallel, and are always connected 

to the same bushing terminal, for the SFRA measurement

 The Red lead is used to measure the “reference voltage” that is injected directly 

at the bushing terminal, at one end of the transformer winding

 The Blue lead is always connected by itself, to the bushing terminal at the “other 

end” of the transformer winding under test

 The impedance of the Red and Blue leads must be equal, so that the voltage 

drop across the two leads is approximately equal, when comparing the Input 

Voltage (Red) and the Output Voltage (Blue)

SFRA - Test Connections
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SFRA - Test Connections

• All three test leads are coaxial cables (Yellow, Red, and Blue)

• The “inner conductor” of each test lead is used to pass the measurement signals to-

and-from the transformer

• The “outer shield conductor” of each test lead is used to “protect” the relatively small 

measurement signal, from interference

• It is critical that the “outer shield conductor” of each test lead is grounded, to obtain the 

correct measurement

• The “outer shield conductor” of each test lead is typically grounded near, or at the end 

of, each test lead (i.e. at the end of the cable closest to the bushing terminal connection)
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SFRA - Test Connection Example

R=50Ω R=50Ω
R=50Ω

A B C

SFRA Test Instrument

Voltage

Source

Input

Voltage (Vin)

Output 

Voltage (Vout)

Voltage Injection Signal

Input Voltage Measurement (Vin)

Output Voltage Measurement (Vout)
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The Key “Frequency Ranges” of an SFRA Trace

1.) The “Low-Frequency Range” (<10kHz)

• when performing an open-circuit test, is heavily influenced by the transformer’s core and 

“magnetizing impedance”

• when performing a short-circuit test, is heavily influenced by the physical position of the 

transformer’s internal components, most notably the transformer’s windings

2.) The “Mid-to-High Frequency Range” (10kHz-500kHz)

• is heavily influenced by the physical position of the transformer’s internal components, most 

notably the transformer’s windings

• is probably the most important frequency range of the SFRA measurement

3.) The “Very-High-Frequency Range” (>500kHz)

• is heavily influenced by the test leads and the test connections (most notably, the shield 

conductor ground connection, made near the end of each test lead)

• In most cases, this “frequency range” is not assessed

• Note, the actual “frequency range” of a trace will vary slightly from transformer-to-transformer, so 

keep in mind, that the frequency range magnitudes provided above are not hard and fast rules
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The Key “Frequency Ranges” of an Open-Circuit Test

The “Core Region”

The “Winding Structure Region”

The “Test Leads

and Test 

Connections” 

Region 
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The Key “Frequency Ranges” of a Short-Circuit Test

The “Leakage Channel 

Region” is heavily 

influenced by the winding 

structure

Short-circuiting the secondary-

side bushing terminals removes 

the influence of the core

Continuity Check – A “DC Winding Resistance Cross-Check”

The “Winding Structure Region”

The “Test Leads

and Test 

Connections” 

Region 
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Open Circuit Test vs. Short-Circuit Test on the Same Winding

The “core resonances”

By short-circuiting the 

secondary-side bushing 

terminals, the “core 

resonances” are 

removed

The “Test Leads

and Test 

Connections” 

Region 

The “Winding Structure Region” is 

typically more-or-less the same, 

when comparing an open-circuit 

and short-circuit test on the same 

winding
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SFRA – Time-Based Comparison Analysis

• The most effective way to assess a set of SFRA test results

• In short, you document the “fingerprint” measurement, when the transformer is 

known to be in “good condition”, and then compare the “fingerprint” to future field 

measurements

• In general, the SFRA trace should not change over time (but note, there are a 

few exceptions)
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SFRA – Phase-Comparison Analysis

• SFRA test results can be assessed reasonably well by comparing the similar traces 

amongst the three phases

• Analyzing SFRA test results by comparing similar traces amongst the three phases 

takes practice and experience

• In general, when comparing the similar traces amongst the three phases, we are 

just looking for something obvious (i.e. some “abnormal” discrepancy when 

comparing the three phases amongst each other)



© OMICRON Page 21

SFRA – Sister Unit Comparison Analysis

• Two transformers must be true sister units, and must have a near-identical 

construction, to compare the SFRA test results amongst them

• A good way to determine whether two power transformers are true sister units, is to 

compare their serial numbers

• This analysis strategy is particularly useful when comparing single-phase transformers, 

that are part of a 3-Phase system
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Factors That Can Influence an SFRA Measurement

• A physical change within the main tank of the transformer

• User error (e.g. a “bad” test connection)

• A poor ground connection - Ensure that the transformer ground, the test equipment ground, and 

the test lead shield connection, are solidly bonded to earth-ground potential

• Test instrument failure - Perform the “zero check” test, to verify that the test equipment is 

functioning properly

• The tap-changer position of both the DETC and the LTC – The transformer must be tested on the 

same tap-position(s) each time the SFRA measurement is performed, to “overlay” and compare 

similar SFRA traces
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• Residual magnetism – The SFRA trace may change, depending on how the core is magnetized 

at the time of the test

 Residual magnetism typically only influences the open-circuit tests, but not the short-

circuit tests

 Residual magnetism typically only influences the “core region” of the SFRA trace (i.e. 

frequencies <10kHz)

• The “bus connection” – Was the SFRA measurement performed with the bushing terminals 

completely isolated, or was the bus connected during the time of the test?

• The bushing(s) state – Was the SFRA test performed with the bushings installed, with the 

bushings not installed, or were temporary bushings used during the time of the test?

Factors That Can Influence an SFRA Measurement
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• The direction of the input voltage injection (e.g. X1-X0 vs. X0-X1) – We recommend using the 

“head-to-tail” method, when performing the SFRA test

• The insulating fluid state – Was the transformer tank filled with oil or not, when the SFRA 

measurement was performed?

• The test voltage – The magnitude of the test voltage typically only influences the “core region” of 

the SFRA trace (i.e. frequencies <10kHz)

Factors That Can Influence an SFRA Measurement
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• The tertiary winding state (if applicable) – Is there a “broken delta” tertiary, and was it open or 

closed, and/or grounded when the SFRA measurement was performed?

• Core ground connection – Is there an external core ground connection, and was it connected or 

disconnected when the SFRA measurement was performed?

• Current transformer state – Are there any bushing Current Transformers associated with the 

power transformer, and was the secondary-side of the CTs shorted, open, grounded, etc.?

Factors That Can Influence an SFRA Measurement
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Understanding the Magnitude of the SFRA Trace, 

relative to the Impedance of the Test Circuit
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SFRA – Impedance vs. Magnitude

• To gain a better understanding of the SFRA test, when an SFRA measurement is performed, 

consider the question, will the Output Voltage be larger or smaller than the Input Voltage?

 Consider a scenario where the transformer winding is completely short-circuited –

The Output Voltage would be equal to the Input Voltage, and the SFRA trace would “shift up” 

in magnitude

 Consider a scenario where the transformer winding is completely open-circuited –

None of the Input Voltage would reach the other end of the transformer winding, and 

therefore, the Output Voltage would, theoretically, be zero, and the SFRA trace would “shift 

down” in magnitude

 Consider what happens to the Output Voltage as the impedance of the transformer 

winding increases – The Output Voltage decreases, and the SFRA trace “shifts down” in 

magnitude

 Consider what happens to the Output Voltage as the impedance of the transformer 

winding decreases – The Output Voltage increases, and the SFRA trace “shifts up” in 

magnitude
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SFRA – Impedance vs. Magnitude

• The higher the impedance of test circuit, the more the measurement signal is attenuated, 

and the lower the magnitude of the output signal will be

• The lower the impedance of test circuit, the less the measurement signal is attenuated, 

and the higher the magnitude of the output signal will be

• Consider the primary winding of a step-down power transformer,

 More winding turns = higher impedance = lower SFRA trace magnitude

 Lower current = higher winding resistance = lower SFRA trace magnitude

• Consider the secondary winding of a step-down power transformer

 Fewer winding turns = lower impedance = higher SFRA trace magnitude

 Higher current = lower winding resistance = higher SFRA trace magnitude
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SFRA – Impedance vs. Magnitude

Primary-side winding traces typically have a lower magnitude

Secondary-side winding traces typically have a higher magnitude
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SFRA – Impedance vs. Magnitude

• What happens to an SFRA trace, if the transformer winding becomes short-

circuited?  The magnitude of the trace will increase (i.e. the trace “shifts-up”)

• What happens to an SFRA trace, if the transformer winding becomes open-

circuited?  The magnitude of the trace will decrease (i.e. the trace “shifts-

down”)
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Typical SFRA Test Plans
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SFRA Measurement Types

1) Open-circuit test (recommended test)

2) Short-circuit test (recommended test)

3) Capacitive inter-winding test (optional test – not typically performed in North America)

4) Inductive inter-winding test (optional test – not typically performed in North America)

• In most cases, the capacitive and inductive tests do not provide information that the 

open-circuit and short-circuit tests do not provide
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Two-Winding Dyn1 Transformer - SFRA Test Plan
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Three-Winding YNyn0d1 Transformer - SFRA Test Plan
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Autotransformer without Tertiary - SFRA Test Plan
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Autotransformer with Accessible Tertiary - SFRA Test Plan
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Frequency Response Theory
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Transformer RLC Network (Resistor–Inductor–Capacitor)

• Resistance of the windings, joints, contacts, tap-selectors, switches, etc...

• Inductance (frequency dependent)

 Magnetizing inductance, which is relevant when performing an open-circuit test

 Leakage inductance, which is relevant when performing a short-circuit test

• Capacitance (frequency dependent)

 Turn-to-turn insulation

 Winding-to-ground insulation

 Winding-to-winding insulation (aka inter-winding insulation)
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Transformer RLC Network (Resistor–Inductor–Capacitor)
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How do the RLC Components Vary Versus Frequency?

Resistor
𝑅

𝑋𝐿 = 𝑗𝜔𝐿

𝑋𝐶 =
1

𝑗𝜔𝐶

𝜔 = 0 → 𝑅
𝜔 = ∞ → 𝑅

𝜔 = 0 → 𝑋𝐿 = 0 → 𝑆ℎ𝑜𝑟𝑡 − 𝐶𝑖𝑟𝑐𝑢𝑖𝑡!
𝜔 = ∞ → 𝑋𝐿 = ∞ → 𝑂𝑝𝑒𝑛 − 𝐶𝑖𝑟𝑐𝑢𝑖𝑡!

𝜔 = 0 → 𝑋𝐶 = ∞ → 𝑂𝑝𝑒𝑛 − 𝐶𝑖𝑟𝑐𝑢𝑖𝑡!
𝜔 = ∞ → 𝑋𝐶 = 0 → 𝑆ℎ𝑜𝑟𝑡 − 𝐶𝑖𝑟𝑐𝑢𝑖𝑡!

Inductor

Capacitor
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Understanding the Four Main Filter Types

1. Low-Pass Filter

 Allows low-frequency signals to pass

 Blocks high-frequency signals

2.    High-Pass Filter

 Blocks low-frequency signals

 Allows high-frequency signals to pass

2.    Band-Pass Filter

 Blocks all signal frequencies except the resonance frequency

4.    Band-Stop Filter

 Allows all signal frequencies except the resonance frequency
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Low-Pass Filter Characteristics
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High-Pass Filter Characteristics
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Band-Pass Filter Characteristics
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Band-Pass Filter Characteristics
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Band-Stop Filter Characteristics

Rref
Rm

10
2

10
4

10
6

-30

-25

-20

-15

-10

-5

0

5

Frequency (Hz)

A
m

p
lit

u
d

e
 [

d
B

]

 

 

C=1nF

C=10nF

C=50nF

𝑋𝐶 =
1

𝑗𝜔𝐶
𝑋𝐿 = 𝑗𝜔𝐿

𝜔 = 0 , 𝑋𝐿= 0, 𝑋𝐶= ∞ , 𝑉𝑜𝑢𝑡= 𝑉𝑖𝑛 , 𝑇𝐹 =
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= 1

𝜔 = ∞ , 𝑋𝐿= ∞, 𝑋𝐶= 0 , 𝑉𝑜𝑢𝑡= 𝑉𝑖𝑛, 𝑇𝐹 =
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= 1

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡



© OMICRON Page 47© OMICRON Page 47

Band-Stop Filter Characteristics
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𝜔 = 𝜔𝑟𝑒𝑠 , 𝑋𝐿= 𝑋𝐶 , 𝑇ℎ𝑒 𝐼𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 𝐶𝑟𝑒𝑎𝑡𝑒 𝑎𝑛
𝑂𝑝𝑒𝑛 − 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦!
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An SFRA Trace Has all Four Filter Types

Low-Pass!

Band-Pass!

Band-Stop!

High-Pass!
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Thank you!


