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The Exciting Current Test: In-Depth

• Introduction to the Exciting Current Test

• Exciting Current Test Procedure

• The Exciting Current “Phase-Patterns”

• Why do “Phase-Patterns” Occur?

• The Exciting Current “Tap-Changer Patterns”

• Capacitive Exciting Current Measurements
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The Exciting Current Test - Failure Modes

1. Compromised Insulation

• Turn-to-turn insulation failures

• Inter-winding insulation failures

• Winding-to-ground insulation failures

2. Tap-Changer Component Failures – I call this test a “tap-changer integrity test”

• Regulating winding

• Preventative autotransformer

• Reversing switch

• Tap selectors

• Stationary contacts

• etc.

• Note, residual magnetism in the core may influence the Exciting Current measurement; 

therefore, try to perform the DC Winding Resistance test last
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The Exciting Current Test - Test Procedure

Step 1: Open-circuit the secondary-side bushing terminals

Step 2: Apply an AC voltage across one phase on the primary side (typically 10kV) 

Step 3: Measure the current flowing through that primary winding (typically in the mA range)

Step 4: Perform the measurement on all three phases, and on various tap-positions

➢ A transformer’s “Exciting Current” is essentially the minimum amount of current that we 

have to supply on the primary-side, for the transformer to function, without any load

Open-Circuit Test
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Exciting Current: Test-Equipment Overview

• The high-voltage (10kV) injection lead – Used to apply an AC voltage across one 

phase on the primary side (typically 10kV) 

• The current measurement leads (red-A and blue-B) – Used to measure the current 

flowing through the primary winding (typically in the mA range)

• The test-instrument ground lead

o Typically connected to the transformer tank-ground

o Used to solidly ground the test-equipment to earth-ground potential

• The “guard-circuit” - Used to isolate and test different components of the transformer

o The Exciting Current Test is typically performed using the Ungrounded 

Specimen Test (UST) mode
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Exciting Current: Test-Voltage

• The Exciting Current test-voltage should not exceed the line-to-ground voltage rating of 

the primary winding under test

• Ideally, we want to apply as high of a test-voltage as possible, to stress the insulation 

system as much as possible, during the time of the test

• However, the test-instrument may “trip” as a result of exceeding the output power (VA) 

limit of the test-instrument’s power supply

• If the test-instrument “trips” when attempting to perform an Exciting Current 

measurement, then the user must troubleshoot, to determine the cause of the relatively 

high Exciting Current required to energize the transformer
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Exciting Current: Which Tap-Positions Should I Test?

1. Of course, the “best practice” is to perform the Exciting Current Test on all 

LTC tap-positions

2. A more “practical” approach would be to perform the Exciting Current Test 

from 16R-1L AND 16L...or from 16L-1R AND 16R

3. A reasonable “time-saver” approach would be to perform the Exciting 

Current Test on 16R, 1R, N, 1L, and 16L
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Exciting Current: Why Did the Test-Instrument “Trip”?

1. User-error

2. The transformer under test has an inherently high Exciting Current

3. A fault, which is causing the Exciting Current to be “higher than normal”

➢ If a transformer fault is not suspected, then the user may have to lower the 

test-voltage to complete the Exciting Current measurement on all three 

phases

➢ Note, to assess the Exciting Current measurement, all three phases and all 

tap-positions must be tested at the same test-voltage
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Exciting Current: When Did the Test-Instrument “Trip”?

1. When testing all three phases?  In this case, it is probably not due to a fault, but it is 

possible

2. When testing a reactive-type LTC in a “bridging” tap-position(s)?  In this case, it is 

probably not due to a fault, but it is possible

3. When testing a transformer that has a Delta primary winding, AND only when 

testing Phase-C? In this case, it is probably not due to a fault, but it is possible

4. When testing a transformer that has a Delta primary winding, AND when 

performing two of the three phase-measurements?  This is typically caused by a 

transformer fault, so the measurement should be investigated
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Exciting Current Test-Connections: Wye Primary Winding with

Accessible Neutral Bushing Terminal
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Exciting Current Test-Connections: Wye Primary Winding 

without Accessible Neutral Bushing Terminal
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Exciting Current Test-Connections: Delta Primary Winding
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Exciting Current Test-Connections: Delta Primary Winding

Phase-A without H2 Grounded Phase-A with H2 Grounded
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Exciting Current Test-Connections: Delta Primary Winding

• Grounding the third bushing terminal of the Delta winding helps to isolate, and 

test, each individual phase-winding of the transformer

• Note, when testing a transformer with a Delta primary winding, when performing 

each measurement, although one phase is measured, two phases are “excited”

Phase-A without H2 Grounded Phase-A with H2 Grounded



© OMICRON Page 19© OMICRON Page 19

Exciting Current Test-Connections: Delta Primary Winding

• Grounding the third bushing terminal of the Delta winding helps to isolate, and 

test, each individual phase-winding of the transformer

• Note, when testing a transformer with a Delta primary winding, when performing 

each measurement, although one phase is measured, two phases are “excited”
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Exciting Current Test-Connections: Delta Primary Winding

• If the transformer has a Delta primary winding, and two of the three phase-

measurements “trip”, then a fault is likely on one of the two phases

• For a Delta primary winding, although one phase is measured, two phases are “excited” 

simultaneously

• In this example, the fault most likely exists on the phase that is energized during both 

measurements that “trip” (i.e. Phase-C in the example below)

Phase A

(A and B are 

Excited)

Phase B

(B and C are 

Excited)

Phase C

(C and A are 

Excited)

16R 13.2mA Overcurrent Overcurrent

1R 69.2mA Overcurrent Overcurrent

N 11.4mA Overcurrent Overcurrent

1L 68.7mA Overcurrent Overcurrent
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Delta Primary Winding: Always Start with the Phase-C Measurement

Delta Primary Winding – Measurement Summary

Measured 

Phases
“Excited” Phases

Total 

Current 

Supplied

Phase-A H1-H3 A A + B High+Low

Phase-B H2-H1 B B + C Low+High

Phase-C H3-H2 C C + A High+High

• The Phase-C measurement requires the largest amount of output power from the test-

instrument, so the Phase-C measurement is the most likely to “trip”

• Typically, if the Phase-C measurement can be completed without “tripping” the test set, then 

all three phase-measurements can be completed without “tripping” the test set
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The Exciting Current Test - Analysis

• There are no absolute limits for assessing the Exciting Current Test results

• The best way to assess the Exciting Current measurement is to use Pattern 

Recognition

• Compare the measured phase-pattern to the expected phase-pattern

• There are three common phase-patterns: 

1. High-Low-High Pattern – where the Phase-B measurement is lower in 

magnitude relative to the other two phases

2. High-Low-Low Pattern – where two of the phase-measurements are lower in 

magnitude relative to the third phase-measurement

3. Low-High-Low Pattern – where the Phase-B measurement is higher in 

magnitude relative to the other two phases
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The Three Exciting Current Phase-Patterns
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“High-Low-High” Phase Pattern

• The High-Low-High pattern describes an Exciting Current Test where the Phase-B 

measurement is lower in magnitude relative to the other two phase-measurements

• The High-Low-High pattern is the expected pattern for all transformers, with the 

exception of transformers that have a Wye primary winding without an accessible 

neutral bushing terminal
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“High-Low-High” Phase Pattern Appears in the SFRA Test too 

• The High-Low-High phase-pattern is exhibited in the “core region” of an SFRA trace

• In most cases, the Phase-B SFRA trace is expected to be the lowest in magnitude, 

relative to the other two phases
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“High-Low-Low” Phase Pattern

• The High-Low-Low pattern describes an Exciting Current Test where two of the 

phase-measurements are lower in magnitude relative to the third phase-measurement

• The High-Low-Low pattern is the expected pattern for transformers that have a Wye 

primary winding without an accessible neutral bushing terminal

• The “High” magnitude measurement is expected for the “Phase-A and Phase-C 

series measurement”
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Why Does the “High-Low-Low” Phase Pattern Occur?
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“High-Low-Low” Phase Pattern Appears in the SFRA Test too 

• The High-Low-Low phase-pattern is exhibited in the “core region” of an SFRA trace  

• The “High” magnitude measurement is expected for the “Phase-A and Phase-C 

series measurement”
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“Low-High-Low” Phase Pattern

• The Low-High-Low pattern describes an Exciting Current Test where the Phase-B 

measurement is higher in magnitude relative to the other two phase-measurements

• The Low-High-Low pattern is very difficult to predict

• The Low-High-Low pattern may be produced by a relatively-low power-rated 

transformer, which we will define here as a transformer rated below 5MVA
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“Low-High-Low” Phase Pattern

• If a relatively-low power-rated transformer produces this pattern, AND all other 

electrical tests are acceptable, AND there is no reason to suspect that there is a 

problem with the transformer, then the Exciting Current Test results should be “passed”

• If a “power transformer” produces this phase pattern, then the transformer should be 

investigated, with emphasis on the “higher than normal” Phase-B current measurement
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“Low-High-Low” Phase Pattern Example

Phase A Phase B Phase C

Measured Current 113mA 127mA 110mA
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“Low-High-Low” Phase Pattern Examples
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Always Compare the Two “Similar” Measurements

• Regardless of which of the three phase patterns you expect to measure, there 

should be two measurements that have a similar exciting current value

• A dissimilarity of more than 15%-20% when comparing these two “similar” 

measurements should be questioned

• A dissimilarity between the two measurements may be caused by,

1. User-error

2. Residual magnetism – Demagnetize the core and repeat the Exciting 

Current Test

3. A capacitive Exciting Current measurement – Please refer to the 

section on capacitive Exciting Current measurements

4. A fault within the transformer
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Exciting Current Test - Dissimilarity Example

• A dissimilarity between the two measurements may be caused by,

1. User-error

2. Residual magnetism – Demagnetize the core and repeat the Exciting 

Current Test

3. A capacitive Exciting Current measurement – Please refer to the 

section on capacitive Exciting Current measurements

4. A fault within the transformer
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Residual Magnetism Example

~50% Deviation

Demagnetize Core

Repeat Test
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Why do the Exciting Current Phase-Patterns Occur?

• Most power transformers have a 3-limb core-form construction

• The Phase-B winding is typically located on the center-limb of the core, while the 

Phase-A and C windings are typically located on the “outer limbs” of the core

• The Exciting Current phase-patterns are mainly determined by the core 

construction and the configuration of the primary winding (delta vs. wye)
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The Phase-A and Phase-C Exciting Current Tests
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The Phase-B Exciting Current Test
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Phase-A

Phase-B

Phase-C

Vin

Vin

Vin
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• For inductive Exciting Current measurements, the magnitude of Exciting 

Current is proportional to the sum of the length of the two main flux paths

• The length of the flux paths for Phases A and C = long flux path + short flux 

path = relatively longer = relatively higher Exciting Current

• The length of the flux paths for Phase B = short flux path + short flux path = 

relatively shorter = relatively lower Exciting Current

Why do the Exciting Current Phase-Patterns Occur?
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The Exciting Current Test - Tap-Changer Patterns

1. De-Energized Tap-Changer Patterns (relatively simple to analyze)

2. Resistive-Type Load-Tap-Changer Patterns (relatively simple to analyze)

3. Reactive-Type Load-Tap-Changer Patterns (the most challenging to analyze)

➢ In most cases, the expected phase-pattern should not change versus tap-position

➢ For more information, please refer to my paper, “A Systematic Approach to Analyzing 

Exciting Current Measurements on Power Transformers”



© OMICRON Page 42© OMICRON Page 42

De-Energized Tap-Changer (DETC) Patterns

• In North America, the DETC is typically located on the primary side of a power 

transformer

• In North America, the DETC typically has 5 tap-positions (e.g. 1-5 or A-E) but 

any number of positions is possible

• The DETC Exciting Current pattern is easy to predict

• As the DETC position is varied, the measurement Exciting Current should 

increase or decrease more-or-less linearly versus tap-position – Any other 

pattern should be questioned
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DETC Pattern Example
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Resistive-Type Load Tap Changer (LTC) Patterns

• In North America, an LTC is typically located on the secondary side of a power 

transformer

• In North America, an LTC typically has 33 tap-positions (e.g. 16R-16L or 1-33)

• Resistive-type LTCs typically have a regulating winding with 16 stationary 

contacts (17 including the neutral)
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Resistive-Type LTC Nameplate Example
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Resistive-Type LTC Nameplate Example
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Resistive-Type LTC Nameplate Example
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• As the resistive-type LTC position is varied, the measured Exciting 

Current should increase or decrease more-or-less linearly

• There are two common resistive-type patterns, which includes,

1. The “V-Shape” pattern, from extreme to extreme

2. A linear increase or linear decrease pattern, from extreme to 

extreme

Resistive-Type LTC Patterns
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Linear Decrease (or Increase) Pattern

Resistive-Type LTC Patterns
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Reactive-Type Load Tap Changer (LTC) Patterns

• In North America, an LTC is typically located on the secondary side of a power 

transformer

• In North America, an LTC typically has 33 tap-positions (e.g. 16R-16L or 1-33)

• Reactive-type LTCs typically have a regulating winding with 8 stationary 

contacts (9 including the neutral)
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Reactive-Type LTC Nameplate Example
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Reactive-Type LTC Nameplate Example
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Reactive-Type LTC Nameplate Example
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Reactive-Type LTC  “Non-Bridging Tap Positions”

• The two tap-selectors of the Preventative Autotransformer (PA) are connected to the same 

stationary contact of the regulating winding

• In a non-bridging position, the PA is short-circuited and has no voltage potential applied 

across its windings (and thus, there will be zero circulating current through the PA)

• In a non-bridging position, the measured exciting current is not influenced by the PA
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• The two tap-selectors of the Preventative Autotransformer (PA) are connected to two 

adjacent stationary contacts of the regulating winding

• In a bridging position, a voltage potential is applied across the PA windings, which 

“excites” the PA, causing a circulating current to flow through the PA

• In a bridging position, the measured exciting current is significantly influenced by the PA

Reactive-Type LTC  “Bridging Tap Positions”
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Reactive-Type LTC Patterns

• Due to the excitation of the Preventative Autotransformer, bridging positions 

should have a higher exciting current than non-bridging positions

• The Neutral (N) position is a non-bridging position, so the exciting current should 

be relatively low in the Neutral position

• The expected phase-pattern should not change versus tap-position



© OMICRON Page 57© OMICRON Page 57

Reactive-Type LTC “Bridging Patterns”

• The measured Exciting Current may vary when comparing only the bridging 

positions, due to construction of the regulating winding

• If a bridging pattern exists, then the bridging positions will typically produce 

two different magnitudes of Exciting Current

1) “bridging high”

2) “bridging low”

• In most cases, a bridging pattern is normal and is not indicative of a 

transformer failure
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“Bridging Pattern” Example
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“Bridging Pattern” Example
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“Bridging Pattern” Example
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Unique “Bridging Pattern”
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Inductive Exciting Current Measurements

• Most transformers produce inductive Exciting Current measurements

• Inductive Exciting Current measurements have a negative signed current 

phase angle, and a positive signed reactance value

• Inductive measurements typically produce predictable Exciting Current 

phase-patterns

Phase A Phase B Phase C

Current (mA) 17.5mA 9.5mA 17.6mA

Current (°) - 42° - 45° - 42°
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Capacitive Exciting Current Measurements

• Some transformers produce capacitive Exciting Current measurements, but they are 

far less common than inductive Exciting Current measurements

• Capacitive Exciting Current measurements have a positive signed current phase 

angle, and a negative signed reactance value

• A capacitive Exciting Current measurement may result in an unusual or 

unexpected phase pattern, regardless of the primary winding configuration and 

core construction

Phase A Phase B Phase C

Current (mA) 9mA 8.2mA 8.2mA

Current (°) + 32° + 55° + 27°
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Inductive-Capacitive Hybrid Measurements

• Some transformers produce both inductive and capacitive Exciting Current 

measurements

• In most cases, an inductive-capacitive hybrid measurement produces the 

“expected” phase-pattern, so the measured current (mA) can be analyzed

• In most cases, when this phenomenon occurs, the Phase-B measurement 

is capacitive, while the Phase A and C measurements are inductive

Phase A Phase B Phase C

Current (mA) 11.7mA 7.6mA 12mA

Current (°) - 15° + 35° - 24°
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Analyzing Capacitive Exciting Current Measurements

• If a capacitive Exciting Current measurement produces an unusual phase-pattern, then 

typically, the Exciting Current (mA) values will not be analyzed

• If a capacitive Exciting Current measurement produces an unusual phase-pattern, then 

the analysis should focus on the Watt Losses (W) values

o The measured Watt Losses (W) values are not influenced by either the inductive or 

capacitive current - Only the resistive current component

o The measured Watt Losses (W) values should produce the expected phase-

pattern, regardless of whether the measurement is inductive or capacitive

o If the Exciting Current measurement is capacitive and the measured Watt 

Losses produce the expected phase-pattern, AND all other electrical tests are 

acceptable, AND there is no reason to suspect that there is a problem with the 

transformer, then the Exciting Current Test results should be “passed”
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Example - Capacitive Exciting Current Measurement

ABB Two-Winding Transformer – 1993 – Dyn1

69kV-12.47kV, 7.5MVA
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GE Two-Winding Transformer – Dyn1

67kV-24.9kV, 10MVA

Example - Capacitive Exciting Current Measurement
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ABB South Boston, Two-Winding Transformer – Dyn1, 69kV-12.470kV, 7.5MVA

Example - Capacitive Exciting Current Measurement



© OMICRON Page 69© OMICRON Page 69

ABB Two-Winding Transformer – 2016 – Dyn1, 34.5kV-0.380kV, 0.1MVA

Example - Capacitive Exciting Current Measurement
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Thank you!


