OMICRON Magazine

examine unresolved issues and aspects of research relating to the optimal interaction of different energy generation plants, storage facilities, and load management systems. During this project, the Max Bögl industrial cell can function as an island grid if any power supply interruptions occur. The aim is also to contribute to efforts for ensuring the stability5 of the public power grid in a more cost-effective manner. Following this approach, industrial plants will become increasingly significant to the successful and cost-effective implementation of the energy transition. The project is focused on developing automated plant deployment and a grid manager (industrial computer with various grid management programs). The combined use of a grid manager and automated plant deployment planning will open up new possibilities for the provision of system services and, thus, the provision of grid support through the Max Bögl industrial cell. In addition, multiple field tests will be carried out on the island grid operation to test for a scenario in which the external power supply fails. How did OMICRON get involved in the project? OMICRON Engineering Services (OES) tested protection devices in Max Bögl’s network on several occasions before the project was launched. With OES, OMICRON offers its customers a global service process that supports them with the planning, commissioning, and maintenance of secondary technology installations. OES also performs network calculations and calculates protection settings. Therefore, it made sense for OES to verify the protection settings resulting from the research project again—to have a second opinion. Within the scope of Max Bögl’s order, OES will also parameterize the protection devices and, where necessary, make adjustments to the device hardware or replace the protection devices. Lastly, OES will be on site during the field tests to assist if any problems arise. Current project status Measurements are being carried out to record the reactions of different elements in the network—e. g., solar inverters—and correctly integrate them into the simulations. For example, how quickly does an inverter react to newly issued specifications 5 Definition of stability and supporting stability: This is about taking advantage of the opportunities offered by the various inverters in the site grid (PV, wind power, battery) in such a way that they help the grid operator to ensure/maintain stability. For example, during a short-circuit fault in the grid, the inverters can make reactive power available to support the supply voltage. Commissioning the battery storage facility 28

RkJQdWJsaXNoZXIy NTkxNzY=